ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.10131
  4. Cited By
Half-Inverse Gradients for Physical Deep Learning

Half-Inverse Gradients for Physical Deep Learning

18 March 2022
Patrick Schnell
Philipp Holl
Nils Thuerey
ArXivPDFHTML

Papers citing "Half-Inverse Gradients for Physical Deep Learning"

11 / 11 papers shown
Title
Solver-in-the-Loop: Learning from Differentiable Physics to Interact
  with Iterative PDE-Solvers
Solver-in-the-Loop: Learning from Differentiable Physics to Interact with Iterative PDE-Solvers
Kiwon Um
R. Brand
Yun Fei
Fei
Philipp Holl
N. Thürey
AI4CE
48
269
0
30 Jun 2020
JAX, M.D.: A Framework for Differentiable Physics
JAX, M.D.: A Framework for Differentiable Physics
S. Schoenholz
E. D. Cubuk
42
37
0
09 Dec 2019
DiffTaichi: Differentiable Programming for Physical Simulation
DiffTaichi: Differentiable Programming for Physical Simulation
Yuanming Hu
Luke Anderson
Tzu-Mao Li
Qi Sun
N. Carr
Jonathan Ragan-Kelley
F. Durand
59
384
0
01 Oct 2019
Neural Ordinary Differential Equations
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
346
5,081
0
19 Jun 2018
Deep Dynamical Modeling and Control of Unsteady Fluid Flows
Deep Dynamical Modeling and Control of Unsteady Fluid Flows
Jeremy Morton
F. Witherden
A. Jameson
Mykel J. Kochenderfer
AI4CE
62
165
0
18 May 2018
Practical Gauss-Newton Optimisation for Deep Learning
Practical Gauss-Newton Optimisation for Deep Learning
Aleksandar Botev
H. Ritter
David Barber
ODL
49
231
0
12 Jun 2017
A simple neural network module for relational reasoning
A simple neural network module for relational reasoning
Adam Santoro
David Raposo
David Barrett
Mateusz Malinowski
Razvan Pascanu
Peter W. Battaglia
Timothy Lillicrap
GNN
NAI
156
1,613
0
05 Jun 2017
Interaction Networks for Learning about Objects, Relations and Physics
Interaction Networks for Learning about Objects, Relations and Physics
Peter W. Battaglia
Razvan Pascanu
Matthew Lai
Danilo Jimenez Rezende
Koray Kavukcuoglu
AI4CE
OCL
PINN
GNN
508
1,407
0
01 Dec 2016
Accelerating Eulerian Fluid Simulation With Convolutional Networks
Accelerating Eulerian Fluid Simulation With Convolutional Networks
Jonathan Tompson
Kristofer Schlachter
Pablo Sprechmann
Ken Perlin
80
534
0
13 Jul 2016
Revisiting Natural Gradient for Deep Networks
Revisiting Natural Gradient for Deep Networks
Razvan Pascanu
Yoshua Bengio
ODL
128
388
0
16 Jan 2013
ADADELTA: An Adaptive Learning Rate Method
ADADELTA: An Adaptive Learning Rate Method
Matthew D. Zeiler
ODL
132
6,623
0
22 Dec 2012
1