ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.09978
  4. Cited By
WOODS: Benchmarks for Out-of-Distribution Generalization in Time Series

WOODS: Benchmarks for Out-of-Distribution Generalization in Time Series

18 March 2022
Jean-Christophe Gagnon-Audet
Kartik Ahuja
Mohammad Javad Darvishi Bayazi
Pooneh Mousavi
G. Dumas
Irina Rish
    OOD
    CML
    AI4TS
ArXivPDFHTML

Papers citing "WOODS: Benchmarks for Out-of-Distribution Generalization in Time Series"

22 / 22 papers shown
Title
Con4m: Context-aware Consistency Learning Framework for Segmented Time Series Classification
Con4m: Context-aware Consistency Learning Framework for Segmented Time Series Classification
Junru Chen
Tianyu Cao
Ninon De Mecquenem
Jiahe Li
Zhilong Chen
F. Friederici
Yang Yang
43
1
0
31 Jul 2024
TADA: Temporal Adversarial Data Augmentation for Time Series Data
TADA: Temporal Adversarial Data Augmentation for Time Series Data
Byeong Tak Lee
Joon-Myoung Kwon
Yong-Yeon Jo
TTA
36
0
0
21 Jul 2024
SKADA-Bench: Benchmarking Unsupervised Domain Adaptation Methods with Realistic Validation On Diverse Modalities
SKADA-Bench: Benchmarking Unsupervised Domain Adaptation Methods with Realistic Validation On Diverse Modalities
Yanis Lalou
Théo Gnassounou
Antoine Collas
Antoine de Mathelin
Oleksii Kachaiev
Ambroise Odonnat
Alexandre Gramfort
Thomas Moreau
Rémi Flamary
87
0
0
16 Jul 2024
Domain Generalisation via Imprecise Learning
Domain Generalisation via Imprecise Learning
Anurag Singh
Siu Lun Chau
S. Bouabid
Krikamol Muandet
AI4CE
OOD
38
5
0
06 Apr 2024
Spectral Invariant Learning for Dynamic Graphs under Distribution Shifts
Spectral Invariant Learning for Dynamic Graphs under Distribution Shifts
Zeyang Zhang
Xin Wang
Ziwei Zhang
Zhou Qin
Weigao Wen
Hui Xue
Haoyang Li
Wenwu Zhu
OOD
37
17
0
08 Mar 2024
Enhancing Evolving Domain Generalization through Dynamic Latent
  Representations
Enhancing Evolving Domain Generalization through Dynamic Latent Representations
Binghui Xie
Yongqiang Chen
Jiaqi Wang
Kaiwen Zhou
Bo Han
Wei Meng
James Cheng
41
5
0
16 Jan 2024
Wild-Tab: A Benchmark For Out-Of-Distribution Generalization In Tabular
  Regression
Wild-Tab: A Benchmark For Out-Of-Distribution Generalization In Tabular Regression
Sergey Kolesnikov
CML
OOD
17
4
0
04 Dec 2023
Out-of-Distribution Generalized Dynamic Graph Neural Network for Human
  Albumin Prediction
Out-of-Distribution Generalized Dynamic Graph Neural Network for Human Albumin Prediction
Zeyang Zhang
Xingwang Li
Fei Teng
Ning Lin
Xueling Zhu
Xin Wang
Wenwu Zhu
OOD
37
11
0
27 Nov 2023
Environment-Aware Dynamic Graph Learning for Out-of-Distribution
  Generalization
Environment-Aware Dynamic Graph Learning for Out-of-Distribution Generalization
Haonan Yuan
Qingyun Sun
Xingcheng Fu
Ziwei Zhang
Cheng Ji
Hao Peng
Jianxin Li
OOD
30
16
0
18 Nov 2023
RELand: Risk Estimation of Landmines via Interpretable Invariant Risk
  Minimization
RELand: Risk Estimation of Landmines via Interpretable Invariant Risk Minimization
Mateo Dulce Rubio
Siqi Zeng
Qi Wang
Didier Alvarado
Francisco Moreno
Hoda Heidari
Fei Fang
32
2
0
06 Nov 2023
TACTiS-2: Better, Faster, Simpler Attentional Copulas for Multivariate
  Time Series
TACTiS-2: Better, Faster, Simpler Attentional Copulas for Multivariate Time Series
Arjun Ashok
Étienne Marcotte
Valentina Zantedeschi
Nicolas Chapados
Alexandre Drouin
AI4TS
26
11
0
02 Oct 2023
Context is Environment
Context is Environment
Sharut Gupta
Stefanie Jegelka
David Lopez-Paz
Kartik Ahuja
35
0
0
18 Sep 2023
An Empirical Study of Pre-trained Model Selection for Out-of-Distribution Generalization and Calibration
An Empirical Study of Pre-trained Model Selection for Out-of-Distribution Generalization and Calibration
Hiroki Naganuma
Ryuichiro Hataya
Kotaro Yoshida
Ioannis Mitliagkas
OODD
92
1
0
17 Jul 2023
Out-of-Distribution Generalization in Text Classification: Past,
  Present, and Future
Out-of-Distribution Generalization in Text Classification: Past, Present, and Future
Linyi Yang
Yangqiu Song
Xuan Ren
Chenyang Lyu
Yidong Wang
Lingqiao Liu
Jindong Wang
Jennifer Foster
Yue Zhang
OOD
37
2
0
23 May 2023
Domain Generalization in Machine Learning Models for Wireless
  Communications: Concepts, State-of-the-Art, and Open Issues
Domain Generalization in Machine Learning Models for Wireless Communications: Concepts, State-of-the-Art, and Open Issues
Mohamed Akrout
Amal Feriani
F. Bellili
A. Mezghani
E. Hossain
OOD
AI4CE
34
26
0
13 Mar 2023
Free Lunch for Domain Adversarial Training: Environment Label Smoothing
Free Lunch for Domain Adversarial Training: Environment Label Smoothing
Yifan Zhang
Xue Wang
Jian Liang
Zhang Zhang
Liangsheng Wang
Rong Jin
Tien-Ping Tan
41
39
0
01 Feb 2023
GLUE-X: Evaluating Natural Language Understanding Models from an
  Out-of-distribution Generalization Perspective
GLUE-X: Evaluating Natural Language Understanding Models from an Out-of-distribution Generalization Perspective
Linyi Yang
Shuibai Zhang
Libo Qin
Yafu Li
Yidong Wang
Hanmeng Liu
Jindong Wang
Xingxu Xie
Yue Zhang
ELM
44
79
0
15 Nov 2022
GLOBEM Dataset: Multi-Year Datasets for Longitudinal Human Behavior
  Modeling Generalization
GLOBEM Dataset: Multi-Year Datasets for Longitudinal Human Behavior Modeling Generalization
Xuhai Xu
Han Zhang
Yasaman S. Sefidgar
Yiyi Ren
Xin Liu
...
Tim Althoff
Margaret E. Morris
E. Riskin
Jennifer Mankoff
A. Dey
41
38
0
04 Nov 2022
Self-Supervised Transformers for fMRI representation
Self-Supervised Transformers for fMRI representation
Itzik Malkiel
Gony Rosenman
Lior Wolf
Talma Hendler
ViT
MedIm
34
18
0
10 Dec 2021
BENDR: using transformers and a contrastive self-supervised learning
  task to learn from massive amounts of EEG data
BENDR: using transformers and a contrastive self-supervised learning task to learn from massive amounts of EEG data
Demetres Kostas
Stephane Aroca-Ouellette
Frank Rudzicz
SSL
41
202
0
28 Jan 2021
Out-of-Distribution Generalization via Risk Extrapolation (REx)
Out-of-Distribution Generalization via Risk Extrapolation (REx)
David M. Krueger
Ethan Caballero
J. Jacobsen
Amy Zhang
Jonathan Binas
Dinghuai Zhang
Rémi Le Priol
Aaron Courville
OOD
215
901
0
02 Mar 2020
Scaling Laws for Neural Language Models
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
258
4,489
0
23 Jan 2020
1