ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.09697
  4. Cited By
Towards Training Billion Parameter Graph Neural Networks for Atomic
  Simulations

Towards Training Billion Parameter Graph Neural Networks for Atomic Simulations

18 March 2022
Anuroop Sriram
Abhishek Das
Brandon M. Wood
Siddharth Goyal
C. L. Zitnick
    AI4CE
ArXivPDFHTML

Papers citing "Towards Training Billion Parameter Graph Neural Networks for Atomic Simulations"

17 / 17 papers shown
Title
Distribution Learning for Molecular Regression
Distribution Learning for Molecular Regression
Nima Shoghi
Pooya Shoghi
Anuroop Sriram
Abhishek Das
OOD
27
0
0
30 Jul 2024
Lightweight Geometric Deep Learning for Molecular Modelling in Catalyst
  Discovery
Lightweight Geometric Deep Learning for Molecular Modelling in Catalyst Discovery
Patrick Geitner
GNN
28
0
0
05 Apr 2024
The Open DAC 2023 Dataset and Challenges for Sorbent Discovery in Direct
  Air Capture
The Open DAC 2023 Dataset and Challenges for Sorbent Discovery in Direct Air Capture
Anuroop Sriram
Sihoon Choi
Xiaohan Yu
Logan M. Brabson
Abhishek Das
Zachary W. Ulissi
Matthew Uyttendaele
A. Medford
D. Sholl
AI4CE
27
35
0
01 Nov 2023
From Molecules to Materials: Pre-training Large Generalizable Models for
  Atomic Property Prediction
From Molecules to Materials: Pre-training Large Generalizable Models for Atomic Property Prediction
Nima Shoghi
Adeesh Kolluru
John R. Kitchin
Zachary W. Ulissi
C. L. Zitnick
Brandon M. Wood
AI4CE
24
32
0
25 Oct 2023
LinGCN: Structural Linearized Graph Convolutional Network for
  Homomorphically Encrypted Inference
LinGCN: Structural Linearized Graph Convolutional Network for Homomorphically Encrypted Inference
Hongwu Peng
Ran Ran
Yukui Luo
Jiahui Zhao
Shaoyi Huang
...
Tong Geng
Chenghong Wang
Xiaolin Xu
Wujie Wen
Caiwen Ding
27
36
0
25 Sep 2023
Accelerating Molecular Graph Neural Networks via Knowledge Distillation
Accelerating Molecular Graph Neural Networks via Knowledge Distillation
Filip Ekstrom Kelvinius
D. Georgiev
Artur P. Toshev
Johannes Gasteiger
26
7
0
26 Jun 2023
EquiformerV2: Improved Equivariant Transformer for Scaling to
  Higher-Degree Representations
EquiformerV2: Improved Equivariant Transformer for Scaling to Higher-Degree Representations
Yidong Liao
Brandon M. Wood
Abhishek Das
Tess E. Smidt
24
131
0
21 Jun 2023
DR-Label: Improving GNN Models for Catalysis Systems by Label
  Deconstruction and Reconstruction
DR-Label: Improving GNN Models for Catalysis Systems by Label Deconstruction and Reconstruction
Bo-Lan Wang
Chen Liang
Jiaze Wang
Furui Liu
Shaogang Hao
Dong Li
Jianye Hao
Guangyong Chen
Xiaolong Zou
Pheng-Ann Heng
41
3
0
06 Mar 2023
The Open MatSci ML Toolkit: A Flexible Framework for Machine Learning in
  Materials Science
The Open MatSci ML Toolkit: A Flexible Framework for Machine Learning in Materials Science
Santiago Miret
Kin Long Kelvin Lee
Carmelo Gonzales
Marcel Nassar
Matthew Spellings
36
19
0
31 Oct 2022
Polyhistor: Parameter-Efficient Multi-Task Adaptation for Dense Vision
  Tasks
Polyhistor: Parameter-Efficient Multi-Task Adaptation for Dense Vision Tasks
Yen-Cheng Liu
Chih-Yao Ma
Junjiao Tian
Zijian He
Z. Kira
120
47
0
07 Oct 2022
Towards Sparsification of Graph Neural Networks
Towards Sparsification of Graph Neural Networks
Hongwu Peng
Deniz Gurevin
Shaoyi Huang
Tong Geng
Weiwen Jiang
O. Khan
Caiwen Ding
GNN
30
24
0
11 Sep 2022
Equiformer: Equivariant Graph Attention Transformer for 3D Atomistic
  Graphs
Equiformer: Equivariant Graph Attention Transformer for 3D Atomistic Graphs
Yi-Lun Liao
Tess E. Smidt
80
215
0
23 Jun 2022
The Open Catalyst 2022 (OC22) Dataset and Challenges for Oxide
  Electrocatalysts
The Open Catalyst 2022 (OC22) Dataset and Challenges for Oxide Electrocatalysts
Richard Tran
Janice Lan
Muhammed Shuaibi
Brandon M. Wood
Siddharth Goyal
...
Jehad Abed
Oleksandr Voznyy
Edward H. Sargent
Zachary W. Ulissi
C. L. Zitnick
28
172
0
17 Jun 2022
Pre-training via Denoising for Molecular Property Prediction
Pre-training via Denoising for Molecular Property Prediction
Sheheryar Zaidi
Michael Schaarschmidt
James Martens
Hyunjik Kim
Yee Whye Teh
Alvaro Sanchez-Gonzalez
Peter W. Battaglia
Razvan Pascanu
Jonathan Godwin
DiffM
AI4CE
15
121
0
31 May 2022
GemNet-OC: Developing Graph Neural Networks for Large and Diverse
  Molecular Simulation Datasets
GemNet-OC: Developing Graph Neural Networks for Large and Diverse Molecular Simulation Datasets
Johannes Gasteiger
Muhammed Shuaibi
Anuroop Sriram
Stephan Günnemann
Zachary W. Ulissi
C. L. Zitnick
Abhishek Das
AI4TS
MLAU
33
66
0
06 Apr 2022
The Open Catalyst 2020 (OC20) Dataset and Community Challenges
The Open Catalyst 2020 (OC20) Dataset and Community Challenges
L. Chanussot
Abhishek Das
Siddharth Goyal
Thibaut Lavril
Muhammed Shuaibi
...
Brandon M. Wood
Junwoong Yoon
Devi Parikh
C. L. Zitnick
Zachary W. Ulissi
229
503
0
20 Oct 2020
Megatron-LM: Training Multi-Billion Parameter Language Models Using
  Model Parallelism
Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism
M. Shoeybi
M. Patwary
Raul Puri
P. LeGresley
Jared Casper
Bryan Catanzaro
MoE
245
1,817
0
17 Sep 2019
1