Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2203.09410
Cited By
A Framework and Benchmark for Deep Batch Active Learning for Regression
17 March 2022
David Holzmüller
Viktor Zaverkin
Johannes Kastner
Ingo Steinwart
UQCV
BDL
GP
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Framework and Benchmark for Deep Batch Active Learning for Regression"
50 / 65 papers shown
Title
Efficient Data Selection for Training Genomic Perturbation Models
G. Panagopoulos
J. Lutzeyer
Sofiane Ennadir
Michalis Vazirgiannis
Jun Pang
418
0
0
18 Mar 2025
Active Learning for Neural PDE Solvers
Daniel Musekamp
Marimuthu Kalimuthu
David Holzmüller
Makoto Takamoto
Carlos Fernandez
AI4CE
108
7
0
02 Aug 2024
Gradient Aligned Regression via Pairwise Losses
Dixian Zhu
Tianbao Yang
Livnat Jerby-Arnon
61
0
0
08 Feb 2024
Making Look-Ahead Active Learning Strategies Feasible with Neural Tangent Kernels
Mohamad Amin Mohamadi
Wonho Bae
Danica J. Sutherland
58
21
0
25 Jun 2022
Fast Finite Width Neural Tangent Kernel
Roman Novak
Jascha Narain Sohl-Dickstein
S. Schoenholz
AAML
49
54
0
17 Jun 2022
Simulation Intelligence: Towards a New Generation of Scientific Methods
Alexander Lavin
D. Krakauer
Hector Zenil
Justin Emile Gottschlich
Tim Mattson
...
A. Hanuka
Manuela Veloso
Samuel A. Assefa
Stephan Zheng
Avi Pfeffer
116
110
0
06 Dec 2021
Mixtures of Laplace Approximations for Improved Post-Hoc Uncertainty in Deep Learning
Runa Eschenhagen
Erik A. Daxberger
Philipp Hennig
Agustinus Kristiadi
UQCV
BDL
52
22
0
05 Nov 2021
Neural Networks as Kernel Learners: The Silent Alignment Effect
Alexander B. Atanasov
Blake Bordelon
Cengiz Pehlevan
MLT
62
83
0
29 Oct 2021
GeneDisco: A Benchmark for Experimental Design in Drug Discovery
Arash Mehrjou
Ashkan Soleymani
Andrew Jesson
Pascal Notin
Y. Gal
Stefan Bauer
Patrick Schwab
66
21
0
22 Oct 2021
Deep Active Learning by Leveraging Training Dynamics
Haonan Wang
Wei Huang
Ziwei Wu
A. Margenot
Hanghang Tong
Jingrui He
AI4CE
45
34
0
16 Oct 2021
Laplace Redux -- Effortless Bayesian Deep Learning
Erik A. Daxberger
Agustinus Kristiadi
Alexander Immer
Runa Eschenhagen
Matthias Bauer
Philipp Hennig
BDL
UQCV
205
312
0
28 Jun 2021
Revisiting Deep Learning Models for Tabular Data
Yu. V. Gorishniy
Ivan Rubachev
Valentin Khrulkov
Artem Babenko
LMTD
100
748
0
22 Jun 2021
Well-tuned Simple Nets Excel on Tabular Datasets
Arlind Kadra
Marius Lindauer
Frank Hutter
Josif Grabocka
38
195
0
21 Jun 2021
Gone Fishing: Neural Active Learning with Fisher Embeddings
Jordan T. Ash
Surbhi Goel
A. Krishnamurthy
Sham Kakade
56
88
0
17 Jun 2021
Scaling Neural Tangent Kernels via Sketching and Random Features
A. Zandieh
Insu Han
H. Avron
N. Shoham
Chaewon Kim
Jinwoo Shin
46
32
0
15 Jun 2021
Neural Active Learning with Performance Guarantees
Pranjal Awasthi
Christoph Dann
Claudio Gentile
Ayush Sekhari
Zhilei Wang
43
22
0
06 Jun 2021
SAINT: Improved Neural Networks for Tabular Data via Row Attention and Contrastive Pre-Training
Gowthami Somepalli
Micah Goldblum
Avi Schwarzschild
C. Bayan Bruss
Tom Goldstein
LMTD
85
325
0
02 Jun 2021
A Theory of Neural Tangent Kernel Alignment and Its Influence on Training
H. Shan
Blake Bordelon
40
11
0
29 May 2021
Properties of the After Kernel
Philip M. Long
41
29
0
21 May 2021
Data Shapley Valuation for Efficient Batch Active Learning
Amirata Ghorbani
James Zou
A. Esteva
TDI
29
37
0
16 Apr 2021
Random Features for the Neural Tangent Kernel
Insu Han
H. Avron
N. Shoham
Chaewon Kim
Jinwoo Shin
48
9
0
03 Apr 2021
Sketching Curvature for Efficient Out-of-Distribution Detection for Deep Neural Networks
Apoorva Sharma
Navid Azizan
Marco Pavone
UQCV
69
46
0
24 Feb 2021
On Statistical Bias In Active Learning: How and When To Fix It
Sebastian Farquhar
Y. Gal
Tom Rainforth
TDI
HAI
40
85
0
27 Jan 2021
Which Minimizer Does My Neural Network Converge To?
Manuel Nonnenmacher
David Reeb
Ingo Steinwart
ODL
32
4
0
04 Nov 2020
Deep learning versus kernel learning: an empirical study of loss landscape geometry and the time evolution of the Neural Tangent Kernel
Stanislav Fort
Gintare Karolina Dziugaite
Mansheej Paul
Sepideh Kharaghani
Daniel M. Roy
Surya Ganguli
97
190
0
28 Oct 2020
Semi-supervised Batch Active Learning via Bilevel Optimization
Zalan Borsos
Marco Tagliasacchi
Andreas Krause
122
23
0
19 Oct 2020
Identifying Wrongly Predicted Samples: A Method for Active Learning
Rahaf Aljundi
N. Chumerin
Daniel Olmeda Reino
14
7
0
14 Oct 2020
Experimental Design for Overparameterized Learning with Application to Single Shot Deep Active Learning
N. Shoham
H. Avron
BDL
19
12
0
27 Sep 2020
A Survey of Deep Active Learning
Pengzhen Ren
Yun Xiao
Xiaojun Chang
Po-Yao (Bernie) Huang
Zhihui Li
Brij B. Gupta
Xiaojiang Chen
Xin Wang
93
1,136
0
30 Aug 2020
Improving predictions of Bayesian neural nets via local linearization
Alexander Immer
M. Korzepa
Matthias Bauer
BDL
45
11
0
19 Aug 2020
Coresets via Bilevel Optimization for Continual Learning and Streaming
Zalan Borsos
Mojmír Mutný
Andreas Krause
CLL
73
233
0
06 Jun 2020
Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks
Agustinus Kristiadi
Matthias Hein
Philipp Hennig
BDL
UQCV
77
286
0
24 Feb 2020
Bayesian Deep Learning and a Probabilistic Perspective of Generalization
A. Wilson
Pavel Izmailov
UQCV
BDL
OOD
95
652
0
20 Feb 2020
Benchmarking the Neural Linear Model for Regression
Sebastian W. Ober
C. Rasmussen
BDL
67
42
0
18 Dec 2019
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
439
42,393
0
03 Dec 2019
Bayesian Batch Active Learning as Sparse Subset Approximation
Robert Pinsler
Jonathan Gordon
Eric T. Nalisnick
José Miguel Hernández-Lobato
UQCV
47
132
0
06 Aug 2019
Selection via Proxy: Efficient Data Selection for Deep Learning
Cody Coleman
Christopher Yeh
Stephen Mussmann
Baharan Mirzasoleiman
Peter Bailis
Percy Liang
J. Leskovec
Matei A. Zaharia
73
346
0
26 Jun 2019
BatchBALD: Efficient and Diverse Batch Acquisition for Deep Bayesian Active Learning
Andreas Kirsch
Joost R. van Amersfoort
Y. Gal
FedML
85
627
0
19 Jun 2019
Batch Active Learning Using Determinantal Point Processes
Erdem Biyik
Kenneth Wang
Nima Anari
Dorsa Sadigh
57
62
0
19 Jun 2019
Deep Batch Active Learning by Diverse, Uncertain Gradient Lower Bounds
Jordan T. Ash
Chicheng Zhang
A. Krishnamurthy
John Langford
Alekh Agarwal
BDL
UQCV
85
772
0
09 Jun 2019
Approximate Inference Turns Deep Networks into Gaussian Processes
Mohammad Emtiyaz Khan
Alexander Immer
Ehsan Abedi
M. Korzepa
UQCV
BDL
83
125
0
05 Jun 2019
On Exact Computation with an Infinitely Wide Neural Net
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruslan Salakhutdinov
Ruosong Wang
213
922
0
26 Apr 2019
Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradient Descent
Jaehoon Lee
Lechao Xiao
S. Schoenholz
Yasaman Bahri
Roman Novak
Jascha Narain Sohl-Dickstein
Jeffrey Pennington
205
1,099
0
18 Feb 2019
A Simple Baseline for Bayesian Uncertainty in Deep Learning
Wesley J. Maddox
T. Garipov
Pavel Izmailov
Dmitry Vetrov
A. Wilson
BDL
UQCV
82
807
0
07 Feb 2019
Diverse mini-batch Active Learning
Fedor Zhdanov
55
155
0
17 Jan 2019
Explaining Aggregates for Exploratory Analytics
Fotis Savva
Christos Anagnostopoulos
Peter Triantafillou
28
18
0
29 Dec 2018
On Lazy Training in Differentiable Programming
Lénaïc Chizat
Edouard Oyallon
Francis R. Bach
102
833
0
19 Dec 2018
Deep Ensemble Bayesian Active Learning : Addressing the Mode Collapse issue in Monte Carlo dropout via Ensembles
Remus Pop
Patric Fulop
UQCV
53
41
0
09 Nov 2018
Dropout-based Active Learning for Regression
Evgenii Tsymbalov
Maxim Panov
Alexander Shapeev
BDL
UQCV
28
56
0
26 Jun 2018
Neural Tangent Kernel: Convergence and Generalization in Neural Networks
Arthur Jacot
Franck Gabriel
Clément Hongler
261
3,194
0
20 Jun 2018
1
2
Next