Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2203.09204
Cited By
Investigation of Physics-Informed Deep Learning for the Prediction of Parametric, Three-Dimensional Flow Based on Boundary Data
17 March 2022
Philipp Heger
Markus Full
Daniel Hilger
N. Hosters
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Investigation of Physics-Informed Deep Learning for the Prediction of Parametric, Three-Dimensional Flow Based on Boundary Data"
8 / 8 papers shown
Title
An extended physics informed neural network for preliminary analysis of parametric optimal control problems
N. Demo
M. Strazzullo
G. Rozza
PINN
46
34
0
26 Oct 2021
Active Training of Physics-Informed Neural Networks to Aggregate and Interpolate Parametric Solutions to the Navier-Stokes Equations
Christopher J. Arthurs
A. King
PINN
129
52
0
02 May 2020
Physics-informed deep learning for incompressible laminar flows
Chengping Rao
Hao Sun
Yang Liu
PINN
AI4CE
101
223
0
24 Feb 2020
Towards Physics-informed Deep Learning for Turbulent Flow Prediction
Rui Wang
K. Kashinath
M. Mustafa
A. Albert
Rose Yu
PINN
AI4CE
39
365
0
20 Nov 2019
Heat Transfer Prediction for Methane in Regenerative Cooling Channels with Neural Networks
Günther Waxenegger-Wilfing
Kai Dresia
J. Deeken
M. Oschwald
27
30
0
24 Jul 2019
Artificial Neural Network Surrogate Modeling of Oil Reservoir: a Case Study
O. Sudakov
D. Koroteev
B. Belozerov
Evgeny Burnaev
21
9
0
20 May 2019
Automatic differentiation in machine learning: a survey
A. G. Baydin
Barak A. Pearlmutter
Alexey Radul
J. Siskind
PINN
AI4CE
ODL
156
2,800
0
20 Feb 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.7K
150,006
0
22 Dec 2014
1