ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.09179
  4. Cited By
Maximum Likelihood Estimation in Gaussian Process Regression is
  Ill-Posed

Maximum Likelihood Estimation in Gaussian Process Regression is Ill-Posed

17 March 2022
Toni Karvonen
Chris J. Oates
    GP
ArXivPDFHTML

Papers citing "Maximum Likelihood Estimation in Gaussian Process Regression is Ill-Posed"

4 / 4 papers shown
Title
Wasserstein Barycenter Gaussian Process based Bayesian Optimization
Wasserstein Barycenter Gaussian Process based Bayesian Optimization
Antonio Candelieri
Andrea Ponti
Francesco Archetti
19
0
0
18 May 2025
Vanilla Bayesian Optimization Performs Great in High Dimensions
Vanilla Bayesian Optimization Performs Great in High Dimensions
Carl Hvarfner
E. Hellsten
Luigi Nardi
39
17
0
03 Feb 2024
An asymptotic study of the joint maximum likelihood estimation of the
  regularity and the amplitude parameters of a Mat{é}rn model on the circle
An asymptotic study of the joint maximum likelihood estimation of the regularity and the amplitude parameters of a Mat{é}rn model on the circle
S. Petit
29
1
0
16 Sep 2022
GParareal: A time-parallel ODE solver using Gaussian process emulation
GParareal: A time-parallel ODE solver using Gaussian process emulation
K. Pentland
M. Tamborrino
Timothy John Sullivan
J. Buchanan
Lynton C. Appel
11
8
0
31 Jan 2022
1