Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2203.08392
Cited By
v1
v2
v3 (latest)
Patch-Fool: Are Vision Transformers Always Robust Against Adversarial Perturbations?
16 March 2022
Y. Fu
Shunyao Zhang
Shan-Hung Wu
Cheng Wan
Yingyan Lin
AAML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Patch-Fool: Are Vision Transformers Always Robust Against Adversarial Perturbations?"
20 / 70 papers shown
Title
Black-box Adversarial Attacks with Limited Queries and Information
Andrew Ilyas
Logan Engstrom
Anish Athalye
Jessy Lin
MLAU
AAML
163
1,200
0
23 Apr 2018
Generating Natural Language Adversarial Examples
M. Alzantot
Yash Sharma
Ahmed Elgohary
Bo-Jhang Ho
Mani B. Srivastava
Kai-Wei Chang
AAML
412
930
0
21 Apr 2018
Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey
Naveed Akhtar
Ajmal Mian
AAML
97
1,867
0
02 Jan 2018
Adversarial Patch
Tom B. Brown
Dandelion Mané
Aurko Roy
Martín Abadi
Justin Gilmer
AAML
78
1,097
0
27 Dec 2017
Mitigating Adversarial Effects Through Randomization
Cihang Xie
Jianyu Wang
Zhishuai Zhang
Zhou Ren
Alan Yuille
AAML
113
1,059
0
06 Nov 2017
Countering Adversarial Images using Input Transformations
Chuan Guo
Mayank Rana
Moustapha Cissé
Laurens van der Maaten
AAML
120
1,405
0
31 Oct 2017
ZOO: Zeroth Order Optimization based Black-box Attacks to Deep Neural Networks without Training Substitute Models
Pin-Yu Chen
Huan Zhang
Yash Sharma
Jinfeng Yi
Cho-Jui Hsieh
AAML
80
1,882
0
14 Aug 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
310
12,069
0
19 Jun 2017
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
713
131,652
0
12 Jun 2017
Detecting Adversarial Samples from Artifacts
Reuben Feinman
Ryan R. Curtin
S. Shintre
Andrew B. Gardner
AAML
93
893
0
01 Mar 2017
On Detecting Adversarial Perturbations
J. H. Metzen
Tim Genewein
Volker Fischer
Bastian Bischoff
AAML
61
950
0
14 Feb 2017
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
266
8,555
0
16 Aug 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,020
0
10 Dec 2015
The Limitations of Deep Learning in Adversarial Settings
Nicolas Papernot
Patrick McDaniel
S. Jha
Matt Fredrikson
Z. Berkay Celik
A. Swami
AAML
112
3,962
0
24 Nov 2015
DeepFool: a simple and accurate method to fool deep neural networks
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
P. Frossard
AAML
151
4,897
0
14 Nov 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.9K
150,115
0
22 Dec 2014
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
277
19,066
0
20 Dec 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
1.7K
100,386
0
04 Sep 2014
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
FAtt
312
7,308
0
20 Dec 2013
Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation
Yoshua Bengio
Nicholas Léonard
Aaron Courville
384
3,135
0
15 Aug 2013
Previous
1
2