ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.08134
  4. Cited By
Privacy-Aware Compression for Federated Data Analysis

Privacy-Aware Compression for Federated Data Analysis

15 March 2022
Kamalika Chaudhuri
Chuan Guo
Michael G. Rabbat
    FedML
ArXivPDFHTML

Papers citing "Privacy-Aware Compression for Federated Data Analysis"

8 / 8 papers shown
Title
Membership Inference Risks in Quantized Models: A Theoretical and Empirical Study
Eric Aubinais
Philippe Formont
Pablo Piantanida
Elisabeth Gassiat
50
0
0
10 Feb 2025
Universal Exact Compression of Differentially Private Mechanisms
Universal Exact Compression of Differentially Private Mechanisms
Yanxiao Liu
Wei-Ning Chen
Ayfer Özgür
Cheuk Ting Li
42
2
0
28 May 2024
Communication Efficient Private Federated Learning Using Dithering
Communication Efficient Private Federated Learning Using Dithering
Burak Hasircioglu
Deniz Gunduz
FedML
45
7
0
14 Sep 2023
Compressed Private Aggregation for Scalable and Robust Federated Learning over Massive Networks
Compressed Private Aggregation for Scalable and Robust Federated Learning over Massive Networks
Natalie Lang
Nir Shlezinger
Rafael G. L. DÓliveira
S. E. Rouayheb
FedML
75
4
0
01 Aug 2023
Breaking the Communication-Privacy-Accuracy Tradeoff with
  $f$-Differential Privacy
Breaking the Communication-Privacy-Accuracy Tradeoff with fff-Differential Privacy
Richeng Jin
Z. Su
C. Zhong
Zhaoyang Zhang
Tony Q.S. Quek
H. Dai
FedML
29
2
0
19 Feb 2023
Privacy-Aware Compression for Federated Learning Through Numerical
  Mechanism Design
Privacy-Aware Compression for Federated Learning Through Numerical Mechanism Design
Chuan Guo
Kamalika Chaudhuri
Pierre Stock
Michael G. Rabbat
FedML
33
7
0
08 Nov 2022
Joint Privacy Enhancement and Quantization in Federated Learning
Joint Privacy Enhancement and Quantization in Federated Learning
Natalie Lang
Elad Sofer
Tomer Shaked
Nir Shlezinger
FedML
37
46
0
23 Aug 2022
Tempered Sigmoid Activations for Deep Learning with Differential Privacy
Tempered Sigmoid Activations for Deep Learning with Differential Privacy
Nicolas Papernot
Abhradeep Thakurta
Shuang Song
Steve Chien
Ulfar Erlingsson
AAML
147
178
0
28 Jul 2020
1