Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2203.07895
Cited By
Simulating Liquids with Graph Networks
14 March 2022
Jonathan Klimesch
Philipp Holl
Nils Thuerey
GNN
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Simulating Liquids with Graph Networks"
9 / 9 papers shown
Title
Weak baselines and reporting biases lead to overoptimism in machine learning for fluid-related partial differential equations
N. McGreivy
Ammar Hakim
AI4CE
34
42
0
09 Jul 2024
Neural SPH: Improved Neural Modeling of Lagrangian Fluid Dynamics
Artur P. Toshev
Jonas A. Erbesdobler
Nikolaus A. Adams
Johannes Brandstetter
AI4CE
43
4
0
09 Feb 2024
LagrangeBench: A Lagrangian Fluid Mechanics Benchmarking Suite
Stefania Costantini
Gianluca Galletti
Fabian Fritz
Stefan Adami
Nikolaus A. Adams
40
13
0
28 Sep 2023
Importance of equivariant and invariant symmetries for fluid flow modeling
Varun Shankar
Shivam Barwey
Zico Kolter
R. Maulik
V. Viswanathan
AI4CE
22
4
0
03 May 2023
On the Relationships between Graph Neural Networks for the Simulation of Physical Systems and Classical Numerical Methods
Artur P. Toshev
Ludger Paehler
A. Panizza
Nikolaus A. Adams
AI4CE
PINN
11
5
0
31 Mar 2023
Invariant preservation in machine learned PDE solvers via error correction
N. McGreivy
Ammar Hakim
AI4CE
PINN
23
8
0
28 Mar 2023
Thermodynamics of learning physical phenomena
Elías Cueto
Francisco Chinesta
AI4CE
25
22
0
26 Jul 2022
Learning Symbolic Physics with Graph Networks
M. Cranmer
Rui Xu
Peter W. Battaglia
S. Ho
PINN
AI4CE
185
83
0
12 Sep 2019
Interaction Networks for Learning about Objects, Relations and Physics
Peter W. Battaglia
Razvan Pascanu
Matthew Lai
Danilo Jimenez Rezende
Koray Kavukcuoglu
AI4CE
OCL
PINN
GNN
278
1,400
0
01 Dec 2016
1