ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.07837
  4. Cited By
Pose-MUM : Reinforcing Key Points Relationship for Semi-Supervised Human
  Pose Estimation

Pose-MUM : Reinforcing Key Points Relationship for Semi-Supervised Human Pose Estimation

15 March 2022
Jongmok Kim
Hwijun Lee
Jae-Kwang Lim
Jongkeun Na
Nojun Kwak
Hawook Jeong
    3DH
ArXivPDFHTML

Papers citing "Pose-MUM : Reinforcing Key Points Relationship for Semi-Supervised Human Pose Estimation"

7 / 7 papers shown
Title
MUM : Mix Image Tiles and UnMix Feature Tiles for Semi-Supervised Object
  Detection
MUM : Mix Image Tiles and UnMix Feature Tiles for Semi-Supervised Object Detection
Jongmok Kim
JooYoung Jang
Seunghyeon Seo
Jisoo Jeong
Jongkeun Na
Nojun Kwak
42
41
0
22 Nov 2021
Exponential Moving Average Normalization for Self-supervised and
  Semi-supervised Learning
Exponential Moving Average Normalization for Self-supervised and Semi-supervised Learning
Zhaowei Cai
Avinash Ravichandran
Subhransu Maji
Charless C. Fowlkes
Zhuowen Tu
Stefano Soatto
76
120
0
21 Jan 2021
FixMatch: Simplifying Semi-Supervised Learning with Consistency and
  Confidence
FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence
Kihyuk Sohn
David Berthelot
Chun-Liang Li
Zizhao Zhang
Nicholas Carlini
E. D. Cubuk
Alexey Kurakin
Han Zhang
Colin Raffel
AAML
153
3,539
0
21 Jan 2020
RandAugment: Practical automated data augmentation with a reduced search
  space
RandAugment: Practical automated data augmentation with a reduced search space
E. D. Cubuk
Barret Zoph
Jonathon Shlens
Quoc V. Le
MQ
208
3,480
0
30 Sep 2019
Simple Baselines for Human Pose Estimation and Tracking
Simple Baselines for Human Pose Estimation and Tracking
Bin Xiao
Haiping Wu
Yichen Wei
3DH
VOT
113
1,784
0
17 Apr 2018
Focal Loss for Dense Object Detection
Focal Loss for Dense Object Detection
Nayeon Lee
Priya Goyal
Ross B. Girshick
Kaiming He
Piotr Dollár
ObjD
112
2,997
0
07 Aug 2017
Unsupervised learning of object landmarks by factorized spatial
  embeddings
Unsupervised learning of object landmarks by factorized spatial embeddings
James Thewlis
Hakan Bilen
Andrea Vedaldi
OCL
SSL
43
162
0
05 May 2017
1