ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.07802
  4. Cited By
A Framework for Verifiable and Auditable Federated Anomaly Detection

A Framework for Verifiable and Auditable Federated Anomaly Detection

15 March 2022
G. Santin
Inna Skarbovsky
Fabiana Fournier
Bruno Lepri
    FedML
ArXivPDFHTML

Papers citing "A Framework for Verifiable and Auditable Federated Anomaly Detection"

2 / 2 papers shown
Title
A Systematic Survey of Blockchained Federated Learning
A Systematic Survey of Blockchained Federated Learning
Zhilin Wang
Qin Hu
Minghui Xu
Zhuang Yan
Yawei Wang
Xiuzhen Cheng
FedML
48
45
0
05 Oct 2021
FjORD: Fair and Accurate Federated Learning under heterogeneous targets
  with Ordered Dropout
FjORD: Fair and Accurate Federated Learning under heterogeneous targets with Ordered Dropout
Samuel Horváth
Stefanos Laskaridis
Mario Almeida
Ilias Leondiadis
Stylianos I. Venieris
Nicholas D. Lane
189
268
0
26 Feb 2021
1