Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2203.07505
Cited By
Closing the Loop: A Framework for Trustworthy Machine Learning in Power Systems
14 March 2022
Jochen Stiasny
Samuel C. Chevalier
Rahul Nellikkath
Brynjar Sævarsson
Spyros Chatzivasileiadis
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Closing the Loop: A Framework for Trustworthy Machine Learning in Power Systems"
7 / 7 papers shown
Title
Enriching Neural Network Training Dataset to Improve Worst-Case Performance Guarantees
Rahul Nellikkath
Spyros Chatzivasileiadis
36
3
0
23 Mar 2023
Physics Informed Neural Networks for Phase Locked Loop Transient Stability Assessment
Rahul Nellikkath
Andreas Venzke
M. Bakhshizadeh
Ilgiz Murzakhanov
Spyros Chatzivasileiadis
18
4
0
21 Mar 2023
Physics-Informed Neural Networks for Time-Domain Simulations: Accuracy, Computational Cost, and Flexibility
Jochen Stiasny
Spyros Chatzivasileiadis
PINN
AI4CE
32
9
0
15 Mar 2023
Minimizing Worst-Case Violations of Neural Networks
Rahul Nellikkath
Spyros Chatzivasileiadis
38
3
0
21 Dec 2022
Modeling the AC Power Flow Equations with Optimally Compact Neural Networks: Application to Unit Commitment
Alyssa Kody
Samuel C. Chevalier
Spyros Chatzivasileiadis
Daniel Molzahn
64
37
0
21 Oct 2021
Physics-Informed Graphical Neural Network for Parameter & State Estimations in Power Systems
Laurent Pagnier
Michael Chertkov
39
49
0
12 Feb 2021
Input Convex Neural Networks
Brandon Amos
Lei Xu
J. Zico Kolter
187
599
0
22 Sep 2016
1