ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.07475
  4. Cited By
Invariance in Policy Optimisation and Partial Identifiability in Reward
  Learning

Invariance in Policy Optimisation and Partial Identifiability in Reward Learning

14 March 2022
Joar Skalse
Matthew Farrugia-Roberts
Stuart J. Russell
Alessandro Abate
Adam Gleave
ArXivPDFHTML

Papers citing "Invariance in Policy Optimisation and Partial Identifiability in Reward Learning"

11 / 11 papers shown
Title
Rethinking Reward Model Evaluation: Are We Barking up the Wrong Tree?
Rethinking Reward Model Evaluation: Are We Barking up the Wrong Tree?
Xueru Wen
Jie Lou
Yaojie Lu
Hongyu Lin
Xing Yu
Xinyu Lu
Xianpei Han
Xianpei Han
Debing Zhang
Le Sun
ALM
69
5
0
17 Feb 2025
Non-maximizing policies that fulfill multi-criterion aspirations in expectation
Non-maximizing policies that fulfill multi-criterion aspirations in expectation
Simon Dima
Simon Fischer
J. Heitzig
Joss Oliver
28
1
0
08 Aug 2024
Towards the Transferability of Rewards Recovered via Regularized Inverse Reinforcement Learning
Towards the Transferability of Rewards Recovered via Regularized Inverse Reinforcement Learning
Andreas Schlaginhaufen
Maryam Kamgarpour
OffRL
23
1
0
03 Jun 2024
A Generalized Acquisition Function for Preference-based Reward Learning
A Generalized Acquisition Function for Preference-based Reward Learning
Evan Ellis
Gaurav R. Ghosal
Stuart J. Russell
Anca Dragan
Erdem Biyik
42
2
0
09 Mar 2024
Distributional Preference Learning: Understanding and Accounting for
  Hidden Context in RLHF
Distributional Preference Learning: Understanding and Accounting for Hidden Context in RLHF
Anand Siththaranjan
Cassidy Laidlaw
Dylan Hadfield-Menell
36
58
0
13 Dec 2023
Automatic Pair Construction for Contrastive Post-training
Automatic Pair Construction for Contrastive Post-training
Canwen Xu
Corby Rosset
Ethan C. Chau
Luciano Del Corro
Shweti Mahajan
Julian McAuley
Jennifer Neville
Ahmed Hassan Awadallah
Nikhil Rao
ALM
27
4
0
03 Oct 2023
Identifiability and Generalizability in Constrained Inverse
  Reinforcement Learning
Identifiability and Generalizability in Constrained Inverse Reinforcement Learning
Andreas Schlaginhaufen
Maryam Kamgarpour
29
10
0
01 Jun 2023
On The Fragility of Learned Reward Functions
On The Fragility of Learned Reward Functions
Lev McKinney
Yawen Duan
David M. Krueger
Adam Gleave
33
20
0
09 Jan 2023
Misspecification in Inverse Reinforcement Learning
Misspecification in Inverse Reinforcement Learning
Joar Skalse
Alessandro Abate
33
22
0
06 Dec 2022
Calculus on MDPs: Potential Shaping as a Gradient
Calculus on MDPs: Potential Shaping as a Gradient
Erik Jenner
H. V. Hoof
Adam Gleave
22
4
0
20 Aug 2022
A Primer on Maximum Causal Entropy Inverse Reinforcement Learning
A Primer on Maximum Causal Entropy Inverse Reinforcement Learning
Adam Gleave
Sam Toyer
29
13
0
22 Mar 2022
1