ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.07078
  4. Cited By
A Mixed Integer Programming Approach for Verifying Properties of
  Binarized Neural Networks

A Mixed Integer Programming Approach for Verifying Properties of Binarized Neural Networks

11 March 2022
Christopher Lazarus
Mykel J. Kochenderfer
    AAML
ArXivPDFHTML

Papers citing "A Mixed Integer Programming Approach for Verifying Properties of Binarized Neural Networks"

7 / 7 papers shown
Title
Verifying Properties of Binary Neural Networks Using Sparse Polynomial Optimization
Verifying Properties of Binary Neural Networks Using Sparse Polynomial Optimization
Jianting Yang
Srecko Ðurasinovic
Jean B. Lasserre
Victor Magron
Jun Zhao
AAML
39
1
0
27 May 2024
Verification of Neural Networks Local Differential Classification
  Privacy
Verification of Neural Networks Local Differential Classification Privacy
Roie Reshef
Anan Kabaha
Olga Seleznova
Dana Drachsler-Cohen
AAML
21
2
0
31 Oct 2023
Quantization-aware Interval Bound Propagation for Training Certifiably
  Robust Quantized Neural Networks
Quantization-aware Interval Bound Propagation for Training Certifiably Robust Quantized Neural Networks
Mathias Lechner
Dorde Zikelic
K. Chatterjee
T. Henzinger
Daniela Rus
AAML
16
2
0
29 Nov 2022
Deep Binary Reinforcement Learning for Scalable Verification
Deep Binary Reinforcement Learning for Scalable Verification
Christopher Lazarus
Mykel J. Kochenderfer
OffRL
42
0
0
11 Mar 2022
Efficient and Robust Mixed-Integer Optimization Methods for Training
  Binarized Deep Neural Networks
Efficient and Robust Mixed-Integer Optimization Methods for Training Binarized Deep Neural Networks
Jannis Kurtz
B. Bah
MQ
21
4
0
21 Oct 2021
Exploiting Verified Neural Networks via Floating Point Numerical Error
Exploiting Verified Neural Networks via Floating Point Numerical Error
Kai Jia
Martin Rinard
AAML
37
34
0
06 Mar 2020
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
231
1,837
0
03 Feb 2017
1