ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.06861
16
12

Let's Collaborate: Regret-based Reactive Synthesis for Robotic Manipulation

14 March 2022
Karan Muvvala
Peter Amorese
Morteza Lahijanian
ArXivPDFHTML
Abstract

As robots gain capabilities to enter our human-centric world, they require formalism and algorithms that enable smart and efficient interactions. This is challenging, especially for robotic manipulators with complex tasks that may require collaboration with humans. Prior works approach this problem through reactive synthesis and generate strategies for the robot that guarantee task completion by assuming an adversarial human. While this assumption gives a sound solution, it leads to an "unfriendly" robot that is agnostic to the human intentions. We relax this assumption by formulating the problem using the notion of regret. We identify an appropriate definition for regret and develop regret-minimizing synthesis framework that enables the robot to seek cooperation when possible while preserving task completion guarantees. We illustrate the efficacy of our framework via various case studies.

View on arXiv
Comments on this paper