Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2203.06127
Cited By
Spatial Consistency Loss for Training Multi-Label Classifiers from Single-Label Annotations
11 March 2022
Thomas Verelst
Paul Kishan Rubenstein
M. Eichner
Tinne Tuytelaars
Maxim Berman
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Spatial Consistency Loss for Training Multi-Label Classifiers from Single-Label Annotations"
8 / 8 papers shown
Title
Boosting Single Positive Multi-label Classification with Generalized Robust Loss
Yanxi Chen
Chunxiao Li
Xinyang Dai
Jinhuan Li
Weiyu Sun
Yiming Wang
Renyuan Zhang
Tinghe Zhang
Bo Wang
32
0
0
06 May 2024
Understanding Label Bias in Single Positive Multi-Label Learning
Julio Arroyo
Pietro Perona
Elijah Cole
25
2
0
24 May 2023
Class-Distribution-Aware Pseudo Labeling for Semi-Supervised Multi-Label Learning
Ming-Kun Xie
Jianxiong Xiao
Hao-Zhe Liu
Gang Niu
Masashi Sugiyama
Sheng-Jun Huang
40
16
0
04 May 2023
An Action Is Worth Multiple Words: Handling Ambiguity in Action Recognition
Kiyoon Kim
Davide Moltisanti
Oisin Mac Aodha
Laura Sevilla-Lara
16
0
0
10 Oct 2022
A patch-based architecture for multi-label classification from single label annotations
Warren Jouanneau
Aurélie Bugeau
Marc Palyart
Nicolas Papadakis
Laurent Vézard
28
0
0
14 Sep 2022
ResNet strikes back: An improved training procedure in timm
Ross Wightman
Hugo Touvron
Hervé Jégou
AI4TS
212
487
0
01 Oct 2021
Re-labeling ImageNet: from Single to Multi-Labels, from Global to Localized Labels
Sangdoo Yun
Seong Joon Oh
Byeongho Heo
Dongyoon Han
Junsuk Choe
Sanghyuk Chun
403
142
0
13 Jan 2021
Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results
Antti Tarvainen
Harri Valpola
OOD
MoMe
261
1,275
0
06 Mar 2017
1