Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2203.05804
Cited By
Near-optimal Offline Reinforcement Learning with Linear Representation: Leveraging Variance Information with Pessimism
11 March 2022
Ming Yin
Yaqi Duan
Mengdi Wang
Yu Wang
OffRL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Near-optimal Offline Reinforcement Learning with Linear Representation: Leveraging Variance Information with Pessimism"
50 / 52 papers shown
Title
Towards Optimal Differentially Private Regret Bounds in Linear MDPs
Sharan Sahu
105
0
0
12 Apr 2025
Leveraging Unlabeled Data Sharing through Kernel Function Approximation in Offline Reinforcement Learning
Yen-Ru Lai
Fu-Chieh Chang
Pei-Yuan Wu
OffRL
131
1
0
22 Aug 2024
Settling the Sample Complexity of Online Reinforcement Learning
Zihan Zhang
Yuxin Chen
Jason D. Lee
S. Du
OffRL
194
25
0
25 Jul 2023
Pessimistic Q-Learning for Offline Reinforcement Learning: Towards Optimal Sample Complexity
Laixi Shi
Gen Li
Yuting Wei
Yuxin Chen
Yuejie Chi
OffRL
91
96
0
28 Feb 2022
First-Order Regret in Reinforcement Learning with Linear Function Approximation: A Robust Estimation Approach
Andrew Wagenmaker
Yifang Chen
Max Simchowitz
S. Du
Kevin Jamieson
136
39
0
07 Dec 2021
Offline Reinforcement Learning: Fundamental Barriers for Value Function Approximation
Dylan J. Foster
A. Krishnamurthy
D. Simchi-Levi
Yunzong Xu
OffRL
149
63
0
21 Nov 2021
Towards Instance-Optimal Offline Reinforcement Learning with Pessimism
Ming Yin
Yu Wang
OffRL
151
82
0
17 Oct 2021
Provable Benefits of Actor-Critic Methods for Offline Reinforcement Learning
Andrea Zanette
Martin J. Wainwright
Emma Brunskill
OffRL
95
119
0
19 Aug 2021
Provably Efficient Generative Adversarial Imitation Learning for Online and Offline Setting with Linear Function Approximation
Zhihan Liu
Yufeng Zhang
Zuyue Fu
Zhuoran Yang
Zhaoran Wang
OffRL
57
6
0
19 Aug 2021
Variance-Aware Off-Policy Evaluation with Linear Function Approximation
Yifei Min
Tianhao Wang
Dongruo Zhou
Quanquan Gu
OffRL
82
38
0
22 Jun 2021
Bellman-consistent Pessimism for Offline Reinforcement Learning
Tengyang Xie
Ching-An Cheng
Nan Jiang
Paul Mineiro
Alekh Agarwal
OffRL
LRM
186
279
0
13 Jun 2021
Safe Reinforcement Learning with Linear Function Approximation
Sanae Amani
Christos Thrampoulidis
Lin F. Yang
62
36
0
11 Jun 2021
Policy Finetuning: Bridging Sample-Efficient Offline and Online Reinforcement Learning
Tengyang Xie
Nan Jiang
Huan Wang
Caiming Xiong
Yu Bai
OffRL
OnRL
99
164
0
09 Jun 2021
Decision Transformer: Reinforcement Learning via Sequence Modeling
Lili Chen
Kevin Lu
Aravind Rajeswaran
Kimin Lee
Aditya Grover
Michael Laskin
Pieter Abbeel
A. Srinivas
Igor Mordatch
OffRL
156
1,660
0
02 Jun 2021
Optimal Uniform OPE and Model-based Offline Reinforcement Learning in Time-Homogeneous, Reward-Free and Task-Agnostic Settings
Ming Yin
Yu Wang
OffRL
97
19
0
13 May 2021
On the Optimality of Batch Policy Optimization Algorithms
Chenjun Xiao
Yifan Wu
Tor Lattimore
Bo Dai
Jincheng Mei
Lihong Li
Csaba Szepesvári
Dale Schuurmans
OffRL
72
33
0
06 Apr 2021
Nearly Horizon-Free Offline Reinforcement Learning
Zhaolin Ren
Jialian Li
Bo Dai
S. Du
Sujay Sanghavi
OffRL
83
49
0
25 Mar 2021
Risk Bounds and Rademacher Complexity in Batch Reinforcement Learning
Yaqi Duan
Chi Jin
Zhiyuan Li
OffRL
93
48
0
25 Mar 2021
Bridging Offline Reinforcement Learning and Imitation Learning: A Tale of Pessimism
Paria Rashidinejad
Banghua Zhu
Cong Ma
Jiantao Jiao
Stuart J. Russell
OffRL
233
290
0
22 Mar 2021
Bilinear Classes: A Structural Framework for Provable Generalization in RL
S. Du
Sham Kakade
Jason D. Lee
Shachar Lovett
G. Mahajan
Wen Sun
Ruosong Wang
OffRL
184
191
0
19 Mar 2021
Bellman Eluder Dimension: New Rich Classes of RL Problems, and Sample-Efficient Algorithms
Chi Jin
Qinghua Liu
Sobhan Miryoosefi
OffRL
101
219
0
01 Feb 2021
A Provably Efficient Algorithm for Linear Markov Decision Process with Low Switching Cost
Minbo Gao
Tianle Xie
S. Du
Lin F. Yang
71
46
0
02 Jan 2021
Is Pessimism Provably Efficient for Offline RL?
Ying Jin
Zhuoran Yang
Zhaoran Wang
OffRL
187
360
0
30 Dec 2020
Nearly Minimax Optimal Reinforcement Learning for Linear Mixture Markov Decision Processes
Dongruo Zhou
Quanquan Gu
Csaba Szepesvári
86
209
0
15 Dec 2020
Exponential Lower Bounds for Batch Reinforcement Learning: Batch RL can be Exponentially Harder than Online RL
Andrea Zanette
OffRL
177
71
0
14 Dec 2020
Logarithmic Regret for Reinforcement Learning with Linear Function Approximation
Jiafan He
Dongruo Zhou
Quanquan Gu
53
95
0
23 Nov 2020
What are the Statistical Limits of Offline RL with Linear Function Approximation?
Ruosong Wang
Dean Phillips Foster
Sham Kakade
OffRL
169
163
0
22 Oct 2020
Provably Good Batch Reinforcement Learning Without Great Exploration
Yao Liu
Adith Swaminathan
Alekh Agarwal
Emma Brunskill
OffRL
165
105
0
16 Jul 2020
Provably Efficient Reinforcement Learning for Discounted MDPs with Feature Mapping
Dongruo Zhou
Jiafan He
Quanquan Gu
81
136
0
23 Jun 2020
On Reward-Free Reinforcement Learning with Linear Function Approximation
Ruosong Wang
S. Du
Lin F. Yang
Ruslan Salakhutdinov
OffRL
75
107
0
19 Jun 2020
Conservative Q-Learning for Offline Reinforcement Learning
Aviral Kumar
Aurick Zhou
George Tucker
Sergey Levine
OffRL
OnRL
146
1,836
0
08 Jun 2020
Model-Based Reinforcement Learning with Value-Targeted Regression
Alex Ayoub
Zeyu Jia
Csaba Szepesvári
Mengdi Wang
Lin F. Yang
OffRL
96
305
0
01 Jun 2020
MOPO: Model-based Offline Policy Optimization
Tianhe Yu
G. Thomas
Lantao Yu
Stefano Ermon
James Zou
Sergey Levine
Chelsea Finn
Tengyu Ma
OffRL
80
773
0
27 May 2020
MOReL : Model-Based Offline Reinforcement Learning
Rahul Kidambi
Aravind Rajeswaran
Praneeth Netrapalli
Thorsten Joachims
OffRL
107
677
0
12 May 2020
Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems
Sergey Levine
Aviral Kumar
George Tucker
Justin Fu
OffRL
GP
576
2,046
0
04 May 2020
Learning Near Optimal Policies with Low Inherent Bellman Error
Andrea Zanette
A. Lazaric
Mykel Kochenderfer
Emma Brunskill
OffRL
86
222
0
29 Feb 2020
Minimax-Optimal Off-Policy Evaluation with Linear Function Approximation
Yaqi Duan
Mengdi Wang
OffRL
150
152
0
21 Feb 2020
Asymptotically Efficient Off-Policy Evaluation for Tabular Reinforcement Learning
Ming Yin
Yu Wang
OffRL
124
82
0
29 Jan 2020
Provably Efficient Exploration in Policy Optimization
Qi Cai
Zhuoran Yang
Chi Jin
Zhaoran Wang
85
283
0
12 Dec 2019
Optimism in Reinforcement Learning with Generalized Linear Function Approximation
Yining Wang
Ruosong Wang
S. Du
A. Krishnamurthy
186
137
0
09 Dec 2019
Behavior Regularized Offline Reinforcement Learning
Yifan Wu
George Tucker
Ofir Nachum
OffRL
97
690
0
26 Nov 2019
Sample Complexity of Reinforcement Learning using Linearly Combined Model Ensembles
Aditya Modi
Nan Jiang
Ambuj Tewari
Satinder Singh
70
132
0
23 Oct 2019
Provably Efficient Reinforcement Learning with Linear Function Approximation
Chi Jin
Zhuoran Yang
Zhaoran Wang
Michael I. Jordan
109
560
0
11 Jul 2019
Stabilizing Off-Policy Q-Learning via Bootstrapping Error Reduction
Aviral Kumar
Justin Fu
George Tucker
Sergey Levine
OffRL
OnRL
140
1,067
0
03 Jun 2019
Reinforcement Learning in Feature Space: Matrix Bandit, Kernels, and Regret Bound
Lin F. Yang
Mengdi Wang
OffRL
GP
91
288
0
24 May 2019
Information-Theoretic Considerations in Batch Reinforcement Learning
Jinglin Chen
Nan Jiang
OOD
OffRL
165
378
0
01 May 2019
Batch Policy Learning under Constraints
Hoang Minh Le
Cameron Voloshin
Yisong Yue
OffRL
68
335
0
20 Mar 2019
Provably efficient RL with Rich Observations via Latent State Decoding
S. Du
A. Krishnamurthy
Nan Jiang
Alekh Agarwal
Miroslav Dudík
John Langford
OffRL
74
230
0
25 Jan 2019
Tighter Problem-Dependent Regret Bounds in Reinforcement Learning without Domain Knowledge using Value Function Bounds
Andrea Zanette
Emma Brunskill
OffRL
126
276
0
01 Jan 2019
Off-Policy Deep Reinforcement Learning without Exploration
Scott Fujimoto
David Meger
Doina Precup
OffRL
BDL
253
1,625
0
07 Dec 2018
1
2
Next