Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2203.05363
Cited By
Differentially Private Learning Needs Hidden State (Or Much Faster Convergence)
10 March 2022
Jiayuan Ye
Reza Shokri
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Differentially Private Learning Needs Hidden State (Or Much Faster Convergence)"
32 / 32 papers shown
Title
Empirical Privacy Variance
Yuzheng Hu
Fan Wu
Ruicheng Xian
Yuhang Liu
Lydia Zakynthinou
Pritish Kamath
Chiyuan Zhang
David A. Forsyth
64
0
0
16 Mar 2025
Controlled privacy leakage propagation throughout overlapping grouped learning
Shahrzad Kiani
Franziska Boenisch
S. Draper
FedML
72
0
0
06 Mar 2025
An Improved Privacy and Utility Analysis of Differentially Private SGD with Bounded Domain and Smooth Losses
Hao Liang
Feiyu Xiong
Xinlei He
Kaishun He
Hong Xing
47
0
0
25 Feb 2025
Differential privacy guarantees of Markov chain Monte Carlo algorithms
Andrea Bertazzi
Tim Johnston
Gareth O. Roberts
Alain Durmus
38
0
0
24 Feb 2025
Guarding the Privacy of Label-Only Access to Neural Network Classifiers via iDP Verification
Anan Kabaha
Dana Drachsler-Cohen
AAML
48
0
0
23 Feb 2025
Adversarial Sample-Based Approach for Tighter Privacy Auditing in Final Model-Only Scenarios
Sangyeon Yoon
Wonje Jeung
Albert No
85
0
0
02 Dec 2024
The Last Iterate Advantage: Empirical Auditing and Principled Heuristic Analysis of Differentially Private SGD
Thomas Steinke
Milad Nasr
Arun Ganesh
Borja Balle
Christopher A. Choquette-Choo
Matthew Jagielski
Jamie Hayes
Abhradeep Thakurta
Adam Smith
Andreas Terzis
34
7
0
08 Oct 2024
Privacy-Preserving Split Learning with Vision Transformers using Patch-Wise Random and Noisy CutMix
Yang Jin
Sihun Baek
Lei Zhang
Hyelin Nam
Praneeth Vepakomma
Ramesh Raskar
Mehdi Bennis
Seong-Lyun Kim
36
2
0
02 Aug 2024
Differentially Private Neural Network Training under Hidden State Assumption
Ding Chen
Chen Liu
FedML
32
0
0
11 Jul 2024
Tighter Privacy Auditing of DP-SGD in the Hidden State Threat Model
Tudor Cebere
A. Bellet
Nicolas Papernot
30
9
0
23 May 2024
Nearly Tight Black-Box Auditing of Differentially Private Machine Learning
Meenatchi Sundaram Muthu Selva Annamalai
Emiliano De Cristofaro
44
11
0
23 May 2024
Neural Collapse Meets Differential Privacy: Curious Behaviors of NoisyGD with Near-perfect Representation Learning
Chendi Wang
Yuqing Zhu
Weijie J. Su
Yu-Xiang Wang
AAML
58
4
0
14 May 2024
Diffusion Denoising as a Certified Defense against Clean-label Poisoning
Sanghyun Hong
Nicholas Carlini
Alexey Kurakin
DiffM
53
3
0
18 Mar 2024
Privacy of SGD under Gaussian or Heavy-Tailed Noise: Guarantees without Gradient Clipping
Umut Simsekli
Mert Gurbuzbalaban
S. Yıldırım
Lingjiong Zhu
38
2
0
04 Mar 2024
Shifted Interpolation for Differential Privacy
Jinho Bok
Weijie Su
Jason M. Altschuler
33
8
0
01 Mar 2024
Langevin Unlearning: A New Perspective of Noisy Gradient Descent for Machine Unlearning
Eli Chien
Haoyu Wang
Ziang Chen
Pan Li
MU
37
8
0
18 Jan 2024
Privacy Amplification by Iteration for ADMM with (Strongly) Convex Objective Functions
T.-H. Hubert Chan
Hao Xie
Mengshi Zhao
37
1
0
14 Dec 2023
Differentially Private SGD Without Clipping Bias: An Error-Feedback Approach
Xinwei Zhang
Zhiqi Bu
Zhiwei Steven Wu
Mingyi Hong
16
7
0
24 Nov 2023
Unified Enhancement of Privacy Bounds for Mixture Mechanisms via
f
f
f
-Differential Privacy
Chendi Wang
Buxin Su
Jiayuan Ye
Reza Shokri
Weijie J. Su
FedML
21
10
0
30 Oct 2023
Privacy Loss of Noisy Stochastic Gradient Descent Might Converge Even for Non-Convex Losses
S. Asoodeh
Mario Díaz
20
6
0
17 May 2023
Have it your way: Individualized Privacy Assignment for DP-SGD
Franziska Boenisch
Christopher Muhl
Adam Dziedzic
Roy Rinberg
Nicolas Papernot
18
18
0
29 Mar 2023
Faster high-accuracy log-concave sampling via algorithmic warm starts
Jason M. Altschuler
Sinho Chewi
29
34
0
20 Feb 2023
Tight Auditing of Differentially Private Machine Learning
Milad Nasr
Jamie Hayes
Thomas Steinke
Borja Balle
Florian Tramèr
Matthew Jagielski
Nicholas Carlini
Andreas Terzis
FedML
35
52
0
15 Feb 2023
Bounding Training Data Reconstruction in DP-SGD
Jamie Hayes
Saeed Mahloujifar
Borja Balle
AAML
FedML
33
39
0
14 Feb 2023
Resolving the Mixing Time of the Langevin Algorithm to its Stationary Distribution for Log-Concave Sampling
Jason M. Altschuler
Kunal Talwar
38
24
0
16 Oct 2022
TAN Without a Burn: Scaling Laws of DP-SGD
Tom Sander
Pierre Stock
Alexandre Sablayrolles
FedML
47
42
0
07 Oct 2022
Privacy of Noisy Stochastic Gradient Descent: More Iterations without More Privacy Loss
Jason M. Altschuler
Kunal Talwar
FedML
36
57
0
27 May 2022
Can Stochastic Gradient Langevin Dynamics Provide Differential Privacy for Deep Learning?
Guy Heller
Ethan Fetaya
BDL
38
3
0
11 Oct 2021
Stochastic Training is Not Necessary for Generalization
Jonas Geiping
Micah Goldblum
Phillip E. Pope
Michael Moeller
Tom Goldstein
89
72
0
29 Sep 2021
Opacus: User-Friendly Differential Privacy Library in PyTorch
Ashkan Yousefpour
I. Shilov
Alexandre Sablayrolles
Davide Testuggine
Karthik Prasad
...
Sayan Gosh
Akash Bharadwaj
Jessica Zhao
Graham Cormode
Ilya Mironov
VLM
168
350
0
25 Sep 2021
Practical and Private (Deep) Learning without Sampling or Shuffling
Peter Kairouz
Brendan McMahan
Shuang Song
Om Thakkar
Abhradeep Thakurta
Zheng Xu
FedML
182
194
0
26 Feb 2021
Extracting Training Data from Large Language Models
Nicholas Carlini
Florian Tramèr
Eric Wallace
Matthew Jagielski
Ariel Herbert-Voss
...
Tom B. Brown
D. Song
Ulfar Erlingsson
Alina Oprea
Colin Raffel
MLAU
SILM
290
1,824
0
14 Dec 2020
1