ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.04850
  4. Cited By
Federated Minimax Optimization: Improved Convergence Analyses and
  Algorithms

Federated Minimax Optimization: Improved Convergence Analyses and Algorithms

9 March 2022
Pranay Sharma
Rohan Panda
Gauri Joshi
P. Varshney
    FedML
ArXiv (abs)PDFHTML

Papers citing "Federated Minimax Optimization: Improved Convergence Analyses and Algorithms"

50 / 72 papers shown
Title
Robust Decentralized Learning with Local Updates and Gradient Tracking
Robust Decentralized Learning with Local Updates and Gradient Tracking
Sajjad Ghiasvand
Amirhossein Reisizadeh
Mahnoosh Alizadeh
Ramtin Pedarsani
98
4
0
02 May 2024
Randomized Block-Coordinate Optimistic Gradient Algorithms for Root-Finding Problems
Randomized Block-Coordinate Optimistic Gradient Algorithms for Root-Finding Problems
Quoc Tran-Dinh
Yang Luo
165
8
0
08 Jan 2023
Faster Single-loop Algorithms for Minimax Optimization without Strong
  Concavity
Faster Single-loop Algorithms for Minimax Optimization without Strong Concavity
Junchi Yang
Antonio Orvieto
Aurelien Lucchi
Niao He
96
64
0
10 Dec 2021
FedMM: Saddle Point Optimization for Federated Adversarial Domain
  Adaptation
FedMM: Saddle Point Optimization for Federated Adversarial Domain Adaptation
Yan Shen
Jianguo Du
Hao Zhang
Benyu Zhang
Zhanghexuan Ji
Mingchen Gao
FedML
69
13
0
16 Oct 2021
Distributed Methods with Compressed Communication for Solving
  Variational Inequalities, with Theoretical Guarantees
Distributed Methods with Compressed Communication for Solving Variational Inequalities, with Theoretical Guarantees
Aleksandr Beznosikov
Peter Richtárik
Michael Diskin
Max Ryabinin
Alexander Gasnikov
FedML
45
22
0
07 Oct 2021
Distributed Saddle-Point Problems Under Similarity
Distributed Saddle-Point Problems Under Similarity
Aleksandr Beznosikov
G. Scutari
Alexander Rogozin
Alexander Gasnikov
67
15
0
22 Jul 2021
Decentralized Local Stochastic Extra-Gradient for Variational
  Inequalities
Decentralized Local Stochastic Extra-Gradient for Variational Inequalities
Aleksandr Beznosikov
Pavel Dvurechensky
Anastasia Koloskova
V. Samokhin
Sebastian U. Stich
Alexander Gasnikov
56
43
0
15 Jun 2021
Communication-efficient SGD: From Local SGD to One-Shot Averaging
Communication-efficient SGD: From Local SGD to One-Shot Averaging
Artin Spiridonoff
Alexander Olshevsky
I. Paschalidis
FedML
80
20
0
09 Jun 2021
Fast Federated Learning in the Presence of Arbitrary Device
  Unavailability
Fast Federated Learning in the Presence of Arbitrary Device Unavailability
Xinran Gu
Kaixuan Huang
Jingzhao Zhang
Longbo Huang
FedML
59
101
0
08 Jun 2021
Near Optimal Stochastic Algorithms for Finite-Sum Unbalanced
  Convex-Concave Minimax Optimization
Near Optimal Stochastic Algorithms for Finite-Sum Unbalanced Convex-Concave Minimax Optimization
Luo Luo
Guangzeng Xie
Tong Zhang
Zhihua Zhang
57
19
0
03 Jun 2021
Stability and Generalization of Stochastic Gradient Methods for Minimax
  Problems
Stability and Generalization of Stochastic Gradient Methods for Minimax Problems
Yunwen Lei
Zhenhuan Yang
Tianbao Yang
Yiming Ying
63
48
0
08 May 2021
Complexity Lower Bounds for Nonconvex-Strongly-Concave Min-Max
  Optimization
Complexity Lower Bounds for Nonconvex-Strongly-Concave Min-Max Optimization
Haochuan Li
Yi Tian
Jingzhao Zhang
Ali Jadbabaie
68
41
0
18 Apr 2021
The Complexity of Nonconvex-Strongly-Concave Minimax Optimization
The Complexity of Nonconvex-Strongly-Concave Minimax Optimization
Siqi Zhang
Junchi Yang
Cristóbal Guzmán
Negar Kiyavash
Niao He
68
62
0
29 Mar 2021
Local Stochastic Gradient Descent Ascent: Convergence Analysis and
  Communication Efficiency
Local Stochastic Gradient Descent Ascent: Convergence Analysis and Communication Efficiency
Yuyang Deng
M. Mahdavi
93
61
0
25 Feb 2021
Distributionally Robust Federated Averaging
Distributionally Robust Federated Averaging
Yuyang Deng
Mohammad Mahdi Kamani
M. Mahdavi
FedML
50
142
0
25 Feb 2021
Decentralized Distributed Optimization for Saddle Point Problems
Decentralized Distributed Optimization for Saddle Point Problems
Alexander Rogozin
Alexander Beznosikov
D. Dvinskikh
D. Kovalev
Pavel Dvurechensky
Alexander Gasnikov
77
27
0
15 Feb 2021
Efficient Algorithms for Federated Saddle Point Optimization
Efficient Algorithms for Federated Saddle Point Optimization
Charlie Hou
K. K. Thekumparampil
Giulia Fanti
Sewoong Oh
FedML
86
23
0
12 Feb 2021
Proximal Gradient Descent-Ascent: Variable Convergence under KŁ
  Geometry
Proximal Gradient Descent-Ascent: Variable Convergence under KŁ Geometry
Ziyi Chen
Yi Zhou
Tengyu Xu
Yingbin Liang
104
35
0
09 Feb 2021
Federated Deep AUC Maximization for Heterogeneous Data with a Constant
  Communication Complexity
Federated Deep AUC Maximization for Heterogeneous Data with a Constant Communication Complexity
Zhuoning Yuan
Zhishuai Guo
Yi Tian Xu
Yiming Ying
Tianbao Yang
FedML
61
36
0
09 Feb 2021
Achieving Linear Speedup with Partial Worker Participation in Non-IID
  Federated Learning
Achieving Linear Speedup with Partial Worker Participation in Non-IID Federated Learning
Haibo Yang
Minghong Fang
Jia Liu
FedML
66
258
0
27 Jan 2021
Efficient Methods for Structured Nonconvex-Nonconcave Min-Max
  Optimization
Efficient Methods for Structured Nonconvex-Nonconcave Min-Max Optimization
Jelena Diakonikolas
C. Daskalakis
Michael I. Jordan
75
144
0
31 Oct 2020
A Single-Loop Smoothed Gradient Descent-Ascent Algorithm for Nonconvex-Concave Min-Max Problems
A Single-Loop Smoothed Gradient Descent-Ascent Algorithm for Nonconvex-Concave Min-Max Problems
Jiawei Zhang
Peijun Xiao
Ruoyu Sun
Zhi-Quan Luo
110
99
0
29 Oct 2020
A Distributed Training Algorithm of Generative Adversarial Networks with
  Quantized Gradients
A Distributed Training Algorithm of Generative Adversarial Networks with Quantized Gradients
Xiaojun Chen
Shu Yang
Liyan Shen
Xuanrong Pang
28
4
0
26 Oct 2020
On The Convergence of First Order Methods for Quasar-Convex Optimization
On The Convergence of First Order Methods for Quasar-Convex Optimization
Jikai Jin
49
9
0
10 Oct 2020
The Complexity of Constrained Min-Max Optimization
The Complexity of Constrained Min-Max Optimization
C. Daskalakis
Stratis Skoulakis
Manolis Zampetakis
115
137
0
21 Sep 2020
Single-Timescale Stochastic Nonconvex-Concave Optimization for Smooth
  Nonlinear TD Learning
Single-Timescale Stochastic Nonconvex-Concave Optimization for Smooth Nonlinear TD Learning
Shuang Qiu
Zhuoran Yang
Xiaohan Wei
Jieping Ye
Zhaoran Wang
81
38
0
23 Aug 2020
Tackling the Objective Inconsistency Problem in Heterogeneous Federated
  Optimization
Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization
Jianyu Wang
Qinghua Liu
Hao Liang
Gauri Joshi
H. Vincent Poor
MoMeFedML
68
1,337
0
15 Jul 2020
The limits of min-max optimization algorithms: convergence to spurious
  non-critical sets
The limits of min-max optimization algorithms: convergence to spurious non-critical sets
Ya-Ping Hsieh
P. Mertikopoulos
Volkan Cevher
80
83
0
16 Jun 2020
Robust Federated Learning: The Case of Affine Distribution Shifts
Robust Federated Learning: The Case of Affine Distribution Shifts
Amirhossein Reisizadeh
Farzan Farnia
Ramtin Pedarsani
Ali Jadbabaie
FedMLOOD
85
166
0
16 Jun 2020
Improved Algorithms for Convex-Concave Minimax Optimization
Improved Algorithms for Convex-Concave Minimax Optimization
Yuanhao Wang
Jian Li
64
64
0
11 Jun 2020
A Unified Single-loop Alternating Gradient Projection Algorithm for
  Nonconvex-Concave and Convex-Nonconcave Minimax Problems
A Unified Single-loop Alternating Gradient Projection Algorithm for Nonconvex-Concave and Convex-Nonconcave Minimax Problems
Zi Xu
Hui-Li Zhang
Yang Xu
Guanghui Lan
72
100
0
03 Jun 2020
Communication-Efficient Distributed Stochastic AUC Maximization with
  Deep Neural Networks
Communication-Efficient Distributed Stochastic AUC Maximization with Deep Neural Networks
Zhishuai Guo
Mingrui Liu
Zhuoning Yuan
Li Shen
Wei Liu
Tianbao Yang
65
42
0
05 May 2020
A Unified Theory of Decentralized SGD with Changing Topology and Local
  Updates
A Unified Theory of Decentralized SGD with Changing Topology and Local Updates
Anastasia Koloskova
Nicolas Loizou
Sadra Boreiri
Martin Jaggi
Sebastian U. Stich
FedML
85
506
0
23 Mar 2020
Loss landscapes and optimization in over-parameterized non-linear
  systems and neural networks
Loss landscapes and optimization in over-parameterized non-linear systems and neural networks
Chaoyue Liu
Libin Zhu
M. Belkin
ODL
77
262
0
29 Feb 2020
Federated Learning with Matched Averaging
Federated Learning with Matched Averaging
Hongyi Wang
Mikhail Yurochkin
Yuekai Sun
Dimitris Papailiopoulos
Y. Khazaeni
FedML
121
1,124
0
15 Feb 2020
Near-Optimal Algorithms for Minimax Optimization
Near-Optimal Algorithms for Minimax Optimization
Tianyi Lin
Chi Jin
Michael I. Jordan
159
254
0
05 Feb 2020
Advances and Open Problems in Federated Learning
Advances and Open Problems in Federated Learning
Peter Kairouz
H. B. McMahan
Brendan Avent
A. Bellet
M. Bennis
...
Zheng Xu
Qiang Yang
Felix X. Yu
Han Yu
Sen Zhao
FedMLAI4CE
259
6,261
0
10 Dec 2019
Lower Bounds for Non-Convex Stochastic Optimization
Lower Bounds for Non-Convex Stochastic Optimization
Yossi Arjevani
Y. Carmon
John C. Duchi
Dylan J. Foster
Nathan Srebro
Blake E. Woodworth
81
361
0
05 Dec 2019
On the Convergence of Local Descent Methods in Federated Learning
On the Convergence of Local Descent Methods in Federated Learning
Farzin Haddadpour
M. Mahdavi
FedML
81
273
0
31 Oct 2019
A Decentralized Proximal Point-type Method for Saddle Point Problems
A Decentralized Proximal Point-type Method for Saddle Point Problems
Weijie Liu
Aryan Mokhtari
Asuman Ozdaglar
S. Pattathil
Zebang Shen
Nenggan Zheng
107
30
0
31 Oct 2019
A Decentralized Parallel Algorithm for Training Generative Adversarial
  Nets
A Decentralized Parallel Algorithm for Training Generative Adversarial Nets
Mingrui Liu
Wei Zhang
Youssef Mroueh
Xiaodong Cui
Jerret Ross
Tianbao Yang
Payel Das
48
74
0
28 Oct 2019
Tighter Theory for Local SGD on Identical and Heterogeneous Data
Tighter Theory for Local SGD on Identical and Heterogeneous Data
Ahmed Khaled
Konstantin Mishchenko
Peter Richtárik
74
434
0
10 Sep 2019
Efficient Algorithms for Smooth Minimax Optimization
Efficient Algorithms for Smooth Minimax Optimization
K. K. Thekumparampil
Prateek Jain
Praneeth Netrapalli
Sewoong Oh
89
191
0
02 Jul 2019
Near-Optimal Methods for Minimizing Star-Convex Functions and Beyond
Near-Optimal Methods for Minimizing Star-Convex Functions and Beyond
Oliver Hinder
Aaron Sidford
N. Sohoni
47
71
0
27 Jun 2019
Adversarial Attack Generation Empowered by Min-Max Optimization
Adversarial Attack Generation Empowered by Min-Max Optimization
Jingkang Wang
Tianyun Zhang
Sijia Liu
Pin-Yu Chen
Jiacen Xu
M. Fardad
Yangqiu Song
AAML
53
37
0
09 Jun 2019
On Gradient Descent Ascent for Nonconvex-Concave Minimax Problems
On Gradient Descent Ascent for Nonconvex-Concave Minimax Problems
Tianyi Lin
Chi Jin
Michael I. Jordan
126
507
0
02 Jun 2019
On the Linear Speedup Analysis of Communication Efficient Momentum SGD
  for Distributed Non-Convex Optimization
On the Linear Speedup Analysis of Communication Efficient Momentum SGD for Distributed Non-Convex Optimization
Hao Yu
Rong Jin
Sen Yang
FedML
91
384
0
09 May 2019
Solving a Class of Non-Convex Min-Max Games Using Iterative First Order
  Methods
Solving a Class of Non-Convex Min-Max Games Using Iterative First Order Methods
Maher Nouiehed
Maziar Sanjabi
Tianjian Huang
Jason D. Lee
Meisam Razaviyayn
82
344
0
21 Feb 2019
Hybrid Block Successive Approximation for One-Sided Non-Convex Min-Max
  Problems: Algorithms and Applications
Hybrid Block Successive Approximation for One-Sided Non-Convex Min-Max Problems: Algorithms and Applications
Songtao Lu
Ioannis C. Tsaknakis
Mingyi Hong
Yongxin Chen
69
170
0
21 Feb 2019
Towards Federated Learning at Scale: System Design
Towards Federated Learning at Scale: System Design
Keith Bonawitz
Hubert Eichner
W. Grieskamp
Dzmitry Huba
A. Ingerman
...
H. B. McMahan
Timon Van Overveldt
David Petrou
Daniel Ramage
Jason Roselander
FedML
121
2,666
0
04 Feb 2019
12
Next