Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2203.03597
Cited By
v1
v2 (latest)
Fast Rates for Noisy Interpolation Require Rethinking the Effects of Inductive Bias
7 March 2022
Konstantin Donhauser
Nicolò Ruggeri
Stefan Stojanovic
Fanny Yang
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Fast Rates for Noisy Interpolation Require Rethinking the Effects of Inductive Bias"
30 / 30 papers shown
Title
Optimistic Rates: A Unifying Theory for Interpolation Learning and Regularization in Linear Regression
Lijia Zhou
Frederic Koehler
Danica J. Sutherland
Nathan Srebro
123
25
0
08 Dec 2021
Learning with convolution and pooling operations in kernel methods
Theodor Misiakiewicz
Song Mei
MLT
67
29
0
16 Nov 2021
Tight bounds for minimum l1-norm interpolation of noisy data
Guillaume Wang
Konstantin Donhauser
Fanny Yang
109
20
0
10 Nov 2021
Foolish Crowds Support Benign Overfitting
Niladri S. Chatterji
Philip M. Long
125
20
0
06 Oct 2021
Uniform Convergence of Interpolators: Gaussian Width, Norm Bounds, and Benign Overfitting
Frederic Koehler
Lijia Zhou
Danica J. Sutherland
Nathan Srebro
68
56
0
17 Jun 2021
AdaBoost and robust one-bit compressed sensing
Geoffrey Chinot
Felix Kuchelmeister
Matthias Löffler
Sara van de Geer
71
5
0
05 May 2021
On the robustness of minimum norm interpolators and regularized empirical risk minimizers
Geoffrey Chinot
Matthias Löffler
Sara van de Geer
62
20
0
01 Dec 2020
Benign overfitting in ridge regression
Alexander Tsigler
Peter L. Bartlett
75
167
0
29 Sep 2020
Finite Versus Infinite Neural Networks: an Empirical Study
Jaehoon Lee
S. Schoenholz
Jeffrey Pennington
Ben Adlam
Lechao Xiao
Roman Novak
Jascha Narain Sohl-Dickstein
77
214
0
31 Jul 2020
On Uniform Convergence and Low-Norm Interpolation Learning
Lijia Zhou
Danica J. Sutherland
Nathan Srebro
59
29
0
10 Jun 2020
Classification vs regression in overparameterized regimes: Does the loss function matter?
Vidya Muthukumar
Adhyyan Narang
Vignesh Subramanian
M. Belkin
Daniel J. Hsu
A. Sahai
92
151
0
16 May 2020
Implicit Bias of Gradient Descent for Wide Two-layer Neural Networks Trained with the Logistic Loss
Lénaïc Chizat
Francis R. Bach
MLT
124
339
0
11 Feb 2020
Neural Tangents: Fast and Easy Infinite Neural Networks in Python
Roman Novak
Lechao Xiao
Jiri Hron
Jaehoon Lee
Alexander A. Alemi
Jascha Narain Sohl-Dickstein
S. Schoenholz
76
229
0
05 Dec 2019
A Model of Double Descent for High-dimensional Binary Linear Classification
Zeyu Deng
A. Kammoun
Christos Thrampoulidis
85
146
0
13 Nov 2019
Benign Overfitting in Linear Regression
Peter L. Bartlett
Philip M. Long
Gábor Lugosi
Alexander Tsigler
MLT
86
778
0
26 Jun 2019
Gradient Descent Maximizes the Margin of Homogeneous Neural Networks
Kaifeng Lyu
Jian Li
87
336
0
13 Jun 2019
On Exact Computation with an Infinitely Wide Neural Net
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruslan Salakhutdinov
Ruosong Wang
226
925
0
26 Apr 2019
Harmless interpolation of noisy data in regression
Vidya Muthukumar
Kailas Vodrahalli
Vignesh Subramanian
A. Sahai
80
202
0
21 Mar 2019
Surprises in High-Dimensional Ridgeless Least Squares Interpolation
Trevor Hastie
Andrea Montanari
Saharon Rosset
Robert Tibshirani
194
743
0
19 Mar 2019
Neural Tangent Kernel: Convergence and Generalization in Neural Networks
Arthur Jacot
Franck Gabriel
Clément Hongler
269
3,213
0
20 Jun 2018
The Implicit Bias of Gradient Descent on Separable Data
Daniel Soudry
Elad Hoffer
Mor Shpigel Nacson
Suriya Gunasekar
Nathan Srebro
158
921
0
27 Oct 2017
High-dimensional classification by sparse logistic regression
F. Abramovich
V. Grinshtein
33
56
0
26 Jun 2017
Regularization and the small-ball method II: complexity dependent error rates
Guillaume Lecué
S. Mendelson
65
39
0
27 Aug 2016
High-Dimensional Asymptotics of Prediction: Ridge Regression and Classification
Yan Sun
Stefan Wager
108
287
0
10 Jul 2015
Breaking the Curse of Dimensionality with Convex Neural Networks
Francis R. Bach
184
706
0
30 Dec 2014
Learning without Concentration
S. Mendelson
224
334
0
01 Jan 2014
Concentration inequalities for order statistics
S. Boucheron
Maud Thomas
156
81
0
31 Jul 2012
Robust 1-bit compressed sensing and sparse logistic regression: A convex programming approach
Y. Plan
Roman Vershynin
242
457
0
06 Feb 2012
Minimax rates of estimation for high-dimensional linear regression over
ℓ
q
\ell_q
ℓ
q
-balls
Garvesh Raskutti
Martin J. Wainwright
Bin Yu
220
575
0
11 Oct 2009
High-dimensional generalized linear models and the lasso
Sara van de Geer
629
756
0
04 Apr 2008
1