ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.03341
  4. Cited By
Recovering single precision accuracy from Tensor Cores while surpassing
  the FP32 theoretical peak performance

Recovering single precision accuracy from Tensor Cores while surpassing the FP32 theoretical peak performance

7 March 2022
Hiroyuki Ootomo
Rio Yokota
ArXivPDFHTML

Papers citing "Recovering single precision accuracy from Tensor Cores while surpassing the FP32 theoretical peak performance"

7 / 7 papers shown
Title
Reducing shared memory footprint to leverage high throughput on Tensor
  Cores and its flexible API extension library
Reducing shared memory footprint to leverage high throughput on Tensor Cores and its flexible API extension library
Hiroyuki Ootomo
Rio Yokota
13
7
0
29 Aug 2023
Generative Artificial Intelligence Reproducibility and Consensus
Generative Artificial Intelligence Reproducibility and Consensus
Edward J. Kim
I. Isozaki
N. Sirkin
Michael Robson
36
0
0
04 Jul 2023
DGEMM on Integer Matrix Multiplication Unit
DGEMM on Integer Matrix Multiplication Unit
Hiroyuki Ootomo
K. Ozaki
Rio Yokota
19
12
0
21 Jun 2023
Mixed-Precision Random Projection for RandNLA on Tensor Cores
Mixed-Precision Random Projection for RandNLA on Tensor Cores
Hiroyuki Ootomo
Rio Yokota
19
3
0
10 Apr 2023
Quantum Circuit Simulation by SGEMM Emulation on Tensor Cores and
  Automatic Precision Selection
Quantum Circuit Simulation by SGEMM Emulation on Tensor Cores and Automatic Precision Selection
Hiryuki Ootomo
Hidetaka Manabe
K. Harada
Rio Yokota
18
5
0
15 Mar 2023
Myths and Legends in High-Performance Computing
Myths and Legends in High-Performance Computing
Satoshi Matsuoka
Jens Domke
Mohamed Wahib
Aleksandr Drozd
Torsten Hoefler
35
14
0
06 Jan 2023
POAS: A high-performance scheduling framework for exploiting Accelerator
  Level Parallelism
POAS: A high-performance scheduling framework for exploiting Accelerator Level Parallelism
Pablo Antonio Martínez
Gregorio Bernabé
J. M. García
16
1
0
21 Sep 2022
1