ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.03304
  4. Cited By
Regularising for invariance to data augmentation improves supervised
  learning

Regularising for invariance to data augmentation improves supervised learning

7 March 2022
Aleksander Botev
Matthias Bauer
Soham De
ArXiv (abs)PDFHTML

Papers citing "Regularising for invariance to data augmentation improves supervised learning"

9 / 9 papers shown
Title
From One to the Power of Many: Invariance to Multi-LiDAR Perception from Single-Sensor Datasets
From One to the Power of Many: Invariance to Multi-LiDAR Perception from Single-Sensor Datasets
Marc Uecker
J. M. Zöllner
83
0
0
27 Sep 2024
Generating Physical Dynamics under Priors
Generating Physical Dynamics under Priors
Zihan Zhou
Xiaoxue Wang
Tianshu Yu
DiffMAI4CE
148
1
0
01 Sep 2024
Understanding the Detrimental Class-level Effects of Data Augmentation
Understanding the Detrimental Class-level Effects of Data Augmentation
Polina Kirichenko
Mark Ibrahim
Randall Balestriero
Diane Bouchacourt
Ramakrishna Vedantam
Hamed Firooz
Andrew Gordon Wilson
73
12
0
07 Dec 2023
SequenceMatch: Revisiting the design of weak-strong augmentations for
  Semi-supervised learning
SequenceMatch: Revisiting the design of weak-strong augmentations for Semi-supervised learning
Khanh-Binh Nguyen
113
4
0
24 Oct 2023
Contextual Reliability: When Different Features Matter in Different
  Contexts
Contextual Reliability: When Different Features Matter in Different Contexts
Gaurav R. Ghosal
Amrith Rajagopal Setlur
Daniel S. Brown
Anca Dragan
Aditi Raghunathan
76
1
0
19 Jul 2023
Subspace-Configurable Networks
Subspace-Configurable Networks
Dong Wang
O. Saukh
Xiaoxi He
Lothar Thiele
OOD
93
0
0
22 May 2023
Image augmentation with conformal mappings for a convolutional neural
  network
Image augmentation with conformal mappings for a convolutional neural network
O. Rainio
Mohamed M. S. Nasser
M. Vuorinen
R. Klén
74
3
0
10 Dec 2022
A Comprehensive Survey of Data Augmentation in Visual Reinforcement
  Learning
A Comprehensive Survey of Data Augmentation in Visual Reinforcement Learning
Guozheng Ma
Zhen Wang
Zhecheng Yuan
Xueqian Wang
Bo Yuan
Dacheng Tao
OffRL
87
28
0
10 Oct 2022
Unsupervised Learning of Visual Features by Contrasting Cluster
  Assignments
Unsupervised Learning of Visual Features by Contrasting Cluster Assignments
Mathilde Caron
Ishan Misra
Julien Mairal
Priya Goyal
Piotr Bojanowski
Armand Joulin
OCLSSL
346
4,109
0
17 Jun 2020
1