ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.01255
  4. Cited By
Low-Degree Multicalibration
v1v2 (latest)

Low-Degree Multicalibration

2 March 2022
Parikshit Gopalan
Michael P. Kim
M. Singhal
Shengjia Zhao
    FaMLUQCV
ArXiv (abs)PDFHTML

Papers citing "Low-Degree Multicalibration"

32 / 32 papers shown
Title
Discretization-free Multicalibration through Loss Minimization over Tree Ensembles
Discretization-free Multicalibration through Loss Minimization over Tree Ensembles
Hongyi Henry Jin
Zijun Ding
Dung Daniel Ngo
Zhiwei Steven Wu
141
0
0
23 May 2025
Diversity-aware clustering: Computational Complexity and Approximation Algorithms
Diversity-aware clustering: Computational Complexity and Approximation Algorithms
Suhas Thejaswi
Ameet Gadekar
Bruno Ordozgoiti
Aristides Gionis
55
3
0
10 Jan 2024
Smooth Calibration, Leaky Forecasts, Finite Recall, and Nash Dynamics
Smooth Calibration, Leaky Forecasts, Finite Recall, and Nash Dynamics
Dean Phillips Foster
S. Hart
63
34
0
13 Oct 2022
Simple and near-optimal algorithms for hidden stratification and
  multi-group learning
Simple and near-optimal algorithms for hidden stratification and multi-group learning
Abdoreza Asadpour
Daniel J. Hsu
138
20
0
22 Dec 2021
Omnipredictors
Omnipredictors
Parikshit Gopalan
Adam Tauman Kalai
Omer Reingold
Vatsal Sharan
Udi Wieder
84
53
0
11 Sep 2021
Calibrating Predictions to Decisions: A Novel Approach to Multi-Class
  Calibration
Calibrating Predictions to Decisions: A Novel Approach to Multi-Class Calibration
Shengjia Zhao
Michael P. Kim
Roshni Sahoo
Tengyu Ma
Stefano Ermon
57
58
0
12 Jul 2021
Multi-group Agnostic PAC Learnability
Multi-group Agnostic PAC Learnability
G. Rothblum
G. Yona
FaML
115
38
0
20 May 2021
Multicalibrated Partitions for Importance Weights
Multicalibrated Partitions for Importance Weights
Parikshit Gopalan
Omer Reingold
Vatsal Sharan
Udi Wieder
60
12
0
10 Mar 2021
Online Multivalid Learning: Means, Moments, and Prediction Intervals
Online Multivalid Learning: Means, Moments, and Prediction Intervals
Varun Gupta
Christopher Jung
Georgy Noarov
Mallesh M. Pai
Aaron Roth
87
44
0
05 Jan 2021
Outcome Indistinguishability
Outcome Indistinguishability
Cynthia Dwork
Michael P. Kim
Omer Reingold
G. Rothblum
G. Yona
69
66
0
26 Nov 2020
Right Decisions from Wrong Predictions: A Mechanism Design Alternative
  to Individual Calibration
Right Decisions from Wrong Predictions: A Mechanism Design Alternative to Individual Calibration
Shengjia Zhao
Stefano Ermon
41
9
0
15 Nov 2020
Moment Multicalibration for Uncertainty Estimation
Moment Multicalibration for Uncertainty Estimation
Christopher Jung
Changhwa Lee
Mallesh M. Pai
Aaron Roth
R. Vohra
UQCV
230
66
0
18 Aug 2020
Individual Calibration with Randomized Forecasting
Individual Calibration with Randomized Forecasting
Shengjia Zhao
Tengyu Ma
Stefano Ermon
60
60
0
18 Jun 2020
Sample Complexity of Uniform Convergence for Multicalibration
Sample Complexity of Uniform Convergence for Multicalibration
Eliran Shabat
Lee Cohen
Yishay Mansour
FaML
48
28
0
04 May 2020
Beyond temperature scaling: Obtaining well-calibrated multiclass
  probabilities with Dirichlet calibration
Beyond temperature scaling: Obtaining well-calibrated multiclass probabilities with Dirichlet calibration
Meelis Kull
Miquel Perelló Nieto
Markus Kängsepp
Telmo de Menezes e Silva Filho
Hao Song
Peter A. Flach
UQCV
73
382
0
28 Oct 2019
Advancing subgroup fairness via sleeping experts
Advancing subgroup fairness via sleeping experts
Avrim Blum
Thodoris Lykouris
FedML
55
37
0
18 Sep 2019
A New Analysis of Differential Privacy's Generalization Guarantees
A New Analysis of Differential Privacy's Generalization Guarantees
Christopher Jung
Katrina Ligett
Seth Neel
Aaron Roth
Saeed Sharifi-Malvajerdi
Moshe Shenfeld
FedML
69
47
0
09 Sep 2019
Distribution Calibration for Regression
Distribution Calibration for Regression
Hao Song
Tom Diethe
Meelis Kull
Peter A. Flach
UQCV
184
112
0
15 May 2019
Tracking and Improving Information in the Service of Fairness
Tracking and Improving Information in the Service of Fairness
Sumegha Garg
Michael P. Kim
Omer Reingold
FaML
38
13
0
22 Apr 2019
The limits of distribution-free conditional predictive inference
The limits of distribution-free conditional predictive inference
Rina Foygel Barber
Emmanuel J. Candès
Aaditya Ramdas
Robert Tibshirani
UQCV
390
275
0
12 Mar 2019
Multiaccuracy: Black-Box Post-Processing for Fairness in Classification
Multiaccuracy: Black-Box Post-Processing for Fairness in Classification
Michael P. Kim
Amirata Ghorbani
James Zou
MLAU
246
343
0
31 May 2018
Fairness Through Computationally-Bounded Awareness
Fairness Through Computationally-Bounded Awareness
Michael P. Kim
Omer Reingold
G. Rothblum
FaML
87
145
0
08 Mar 2018
Calibration for the (Computationally-Identifiable) Masses
Calibration for the (Computationally-Identifiable) Masses
Úrsula Hébert-Johnson
Michael P. Kim
Omer Reingold
G. Rothblum
FaML
60
88
0
22 Nov 2017
Preventing Fairness Gerrymandering: Auditing and Learning for Subgroup
  Fairness
Preventing Fairness Gerrymandering: Auditing and Learning for Subgroup Fairness
Michael Kearns
Seth Neel
Aaron Roth
Zhiwei Steven Wu
FaML
199
782
0
14 Nov 2017
On Fairness and Calibration
On Fairness and Calibration
Geoff Pleiss
Manish Raghavan
Felix Wu
Jon M. Kleinberg
Kilian Q. Weinberger
FaML
200
880
0
06 Sep 2017
On Calibration of Modern Neural Networks
On Calibration of Modern Neural Networks
Chuan Guo
Geoff Pleiss
Yu Sun
Kilian Q. Weinberger
UQCV
299
5,855
0
14 Jun 2017
Equality of Opportunity in Supervised Learning
Equality of Opportunity in Supervised Learning
Moritz Hardt
Eric Price
Nathan Srebro
FaML
230
4,329
0
07 Oct 2016
Inherent Trade-Offs in the Fair Determination of Risk Scores
Inherent Trade-Offs in the Fair Determination of Risk Scores
Jon M. Kleinberg
S. Mullainathan
Manish Raghavan
FaML
121
1,775
0
19 Sep 2016
Algorithmic Stability for Adaptive Data Analysis
Algorithmic Stability for Adaptive Data Analysis
Raef Bassily
Kobbi Nissim
Adam D. Smith
Thomas Steinke
Uri Stemmer
Jonathan R. Ullman
96
268
0
08 Nov 2015
Preserving Statistical Validity in Adaptive Data Analysis
Preserving Statistical Validity in Adaptive Data Analysis
Cynthia Dwork
Vitaly Feldman
Moritz Hardt
T. Pitassi
Omer Reingold
Aaron Roth
79
376
0
10 Nov 2014
Sum-of-squares proofs and the quest toward optimal algorithms
Sum-of-squares proofs and the quest toward optimal algorithms
Boaz Barak
David Steurer
64
138
0
21 Apr 2014
Distribution-Specific Agnostic Boosting
Distribution-Specific Agnostic Boosting
Vitaly Feldman
FedML
101
50
0
16 Sep 2009
1