ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.01212
  4. Cited By
A Quantitative Geometric Approach to Neural-Network Smoothness

A Quantitative Geometric Approach to Neural-Network Smoothness

2 March 2022
Zehao Wang
Gautam Prakriya
S. Jha
ArXivPDFHTML

Papers citing "A Quantitative Geometric Approach to Neural-Network Smoothness"

6 / 6 papers shown
Title
Improved Scalable Lipschitz Bounds for Deep Neural Networks
Improved Scalable Lipschitz Bounds for Deep Neural Networks
U. Syed
Bin Hu
BDL
56
0
0
18 Mar 2025
Monotone, Bi-Lipschitz, and Polyak-Lojasiewicz Networks
Monotone, Bi-Lipschitz, and Polyak-Lojasiewicz Networks
Ruigang Wang
Krishnamurthy Dvijotham
I. Manchester
36
5
0
02 Feb 2024
A Unified Algebraic Perspective on Lipschitz Neural Networks
A Unified Algebraic Perspective on Lipschitz Neural Networks
Alexandre Araujo
Aaron J. Havens
Blaise Delattre
A. Allauzen
Bin Hu
AAML
36
52
0
06 Mar 2023
Introduction to Neural Network Verification
Introduction to Neural Network Verification
Aws Albarghouthi
AAML
53
85
0
21 Sep 2021
Globally-Robust Neural Networks
Globally-Robust Neural Networks
Klas Leino
Zifan Wang
Matt Fredrikson
AAML
OOD
80
125
0
16 Feb 2021
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
249
1,838
0
03 Feb 2017
1