ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.00176
  4. Cited By
When AUC meets DRO: Optimizing Partial AUC for Deep Learning with
  Non-Convex Convergence Guarantee
v1v2v3v4v5 (latest)

When AUC meets DRO: Optimizing Partial AUC for Deep Learning with Non-Convex Convergence Guarantee

1 March 2022
Dixian Zhu
Gang Li
Bokun Wang
Xiaodong Wu
Tianbao Yang
ArXiv (abs)PDFHTML

Papers citing "When AUC meets DRO: Optimizing Partial AUC for Deep Learning with Non-Convex Convergence Guarantee"

21 / 21 papers shown
Title
Stochastic Momentum Methods for Non-smooth Non-Convex Finite-Sum Coupled Compositional Optimization
Stochastic Momentum Methods for Non-smooth Non-Convex Finite-Sum Coupled Compositional Optimization
Xingyu Chen
Bokun Wang
Ming-Hsuan Yang
Quanqi Hu
Qihang Lin
Tianbao Yang
61
0
0
03 Jun 2025
Stochastic Primal-Dual Double Block-Coordinate for Two-way Partial AUC Maximization
Stochastic Primal-Dual Double Block-Coordinate for Two-way Partial AUC Maximization
Linli Zhou
Bokun Wang
My T. Thai
Tianbao Yang
42
0
0
28 May 2025
DisCO: Reinforcing Large Reasoning Models with Discriminative Constrained Optimization
DisCO: Reinforcing Large Reasoning Models with Discriminative Constrained Optimization
Gang Li
Ming Lin
Tomer Galanti
Zhengzhong Tu
Tianbao Yang
130
1
0
18 May 2025
Nested Stochastic Algorithm for Generalized Sinkhorn distance-Regularized Distributionally Robust Optimization
Nested Stochastic Algorithm for Generalized Sinkhorn distance-Regularized Distributionally Robust Optimization
Yue Yang
Yi Zhou
Zhaosong Lu
138
0
0
29 Mar 2025
Communication-Efficient Federated Group Distributionally Robust
  Optimization
Communication-Efficient Federated Group Distributionally Robust Optimization
Zhishuai Guo
Tianbao Yang
FedML
130
0
0
08 Oct 2024
Improved Diversity-Promoting Collaborative Metric Learning for
  Recommendation
Improved Diversity-Promoting Collaborative Metric Learning for Recommendation
Shilong Bao
Qianqian Xu
Zhiyong Yang
Yuan He
Xiaochun Cao
Qingming Huang
150
6
0
02 Sep 2024
Single-loop Stochastic Algorithms for Difference of Max-Structured
  Weakly Convex Functions
Single-loop Stochastic Algorithms for Difference of Max-Structured Weakly Convex Functions
Quanqi Hu
Qi Qi
Zhaosong Lu
Tianbao Yang
117
2
0
28 May 2024
Lower-Left Partial AUC: An Effective and Efficient Optimization Metric
  for Recommendation
Lower-Left Partial AUC: An Effective and Efficient Optimization Metric for Recommendation
Wentao Shi
Chenxu Wang
Fuli Feng
Yang Zhang
Wenjie Wang
Junkang Wu
Xiangnan He
82
3
0
29 Feb 2024
DRAUC: An Instance-wise Distributionally Robust AUC Optimization
  Framework
DRAUC: An Instance-wise Distributionally Robust AUC Optimization Framework
Siran Dai
Qianqian Xu
Zhiyong Yang
Xiaochun Cao
Qingming Huang
122
2
0
06 Nov 2023
Non-Smooth Weakly-Convex Finite-sum Coupled Compositional Optimization
Non-Smooth Weakly-Convex Finite-sum Coupled Compositional Optimization
Quanqi Hu
Dixian Zhu
Tianbao Yang
140
10
0
05 Oct 2023
LibAUC: A Deep Learning Library for X-Risk Optimization
LibAUC: A Deep Learning Library for X-Risk Optimization
Zhuoning Yuan
Dixian Zhu
Zimeng Qiu
Gang Li
Xuanhui Wang
Tianbao Yang
BDL
118
16
0
05 Jun 2023
AUC Optimization from Multiple Unlabeled Datasets
AUC Optimization from Multiple Unlabeled Datasets
Zheng Xie
Yu Liu
Ming Li
151
1
0
25 May 2023
Weakly Supervised AUC Optimization: A Unified Partial AUC Approach
Weakly Supervised AUC Optimization: A Unified Partial AUC Approach
Zheng Xie
Yu Liu
Hao He
Ming Li
Zhi Zhou
NoLa
90
6
0
23 May 2023
On the Theories Behind Hard Negative Sampling for Recommendation
On the Theories Behind Hard Negative Sampling for Recommendation
Wentao Shi
Jiawei Chen
Fuli Feng
Jizhi Zhang
Junkang Wu
Chongming Gao
Xiangnan He
BDL
114
37
0
07 Feb 2023
Distributionally Robust Learning with Weakly Convex Losses: Convergence
  Rates and Finite-Sample Guarantees
Distributionally Robust Learning with Weakly Convex Losses: Convergence Rates and Finite-Sample Guarantees
Landi Zhu
Mert Gurbuzbalaban
A. Ruszczynski
96
7
0
16 Jan 2023
FeDXL: Provable Federated Learning for Deep X-Risk Optimization
FeDXL: Provable Federated Learning for Deep X-Risk Optimization
Zhishuai Guo
Rong Jin
Jiebo Luo
Tianbao Yang
FedML
133
8
0
26 Oct 2022
Asymptotically Unbiased Instance-wise Regularized Partial AUC
  Optimization: Theory and Algorithm
Asymptotically Unbiased Instance-wise Regularized Partial AUC Optimization: Theory and Algorithm
Huiyang Shao
Qianqian Xu
Zhiyong Yang
Shilong Bao
Qingming Huang
128
5
0
08 Oct 2022
Algorithmic Foundations of Empirical X-risk Minimization
Algorithmic Foundations of Empirical X-risk Minimization
Tianbao Yang
168
6
0
01 Jun 2022
Multi-block Min-max Bilevel Optimization with Applications in Multi-task
  Deep AUC Maximization
Multi-block Min-max Bilevel Optimization with Applications in Multi-task Deep AUC Maximization
Quanqi Hu
Yongjian Zhong
Tianbao Yang
129
16
0
01 Jun 2022
AUC Maximization in the Era of Big Data and AI: A Survey
AUC Maximization in the Era of Big Data and AI: A Survey
Tianbao Yang
Yiming Ying
183
193
0
28 Mar 2022
Large-scale Optimization of Partial AUC in a Range of False Positive
  Rates
Large-scale Optimization of Partial AUC in a Range of False Positive Rates
Yao Yao
Qihang Lin
Tianbao Yang
110
16
0
03 Mar 2022
1