Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2202.14037
Cited By
Understanding Contrastive Learning Requires Incorporating Inductive Biases
28 February 2022
Nikunj Saunshi
Jordan T. Ash
Surbhi Goel
Dipendra Kumar Misra
Cyril Zhang
Sanjeev Arora
Sham Kakade
A. Krishnamurthy
SSL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Understanding Contrastive Learning Requires Incorporating Inductive Biases"
21 / 71 papers shown
Title
Understanding Multimodal Contrastive Learning and Incorporating Unpaired Data
Ryumei Nakada
Halil Ibrahim Gulluk
Zhun Deng
Wenlong Ji
James Zou
Linjun Zhang
SSL
VLM
106
41
0
13 Feb 2023
Evaluating Self-Supervised Learning via Risk Decomposition
Yann Dubois
Tatsunori Hashimoto
Percy Liang
71
9
0
06 Feb 2023
The SSL Interplay: Augmentations, Inductive Bias, and Generalization
Vivien A. Cabannes
B. Kiani
Randall Balestriero
Yann LeCun
A. Bietti
SSL
92
33
0
06 Feb 2023
Deciphering the Projection Head: Representation Evaluation Self-supervised Learning
Jiajun Ma
Tianyang Hu
Wei Cao
76
8
0
28 Jan 2023
Understanding Self-Supervised Pretraining with Part-Aware Representation Learning
Jie Zhu
Jiyang Qi
Mingyu Ding
Xiaokang Chen
Ping Luo
Xinggang Wang
Wenyu Liu
Leye Wang
Jingdong Wang
SSL
104
8
0
27 Jan 2023
GEDI: GEnerative and DIscriminative Training for Self-Supervised Learning
Emanuele Sansone
Robin Manhaeve
SSL
105
9
0
27 Dec 2022
A Theoretical Study of Inductive Biases in Contrastive Learning
Jeff Z. HaoChen
Tengyu Ma
UQCV
SSL
119
34
0
27 Nov 2022
ProtoX: Explaining a Reinforcement Learning Agent via Prototyping
Ronilo Ragodos
Tong Wang
Qihang Lin
Xun Zhou
65
7
0
06 Nov 2022
Same Pre-training Loss, Better Downstream: Implicit Bias Matters for Language Models
Hong Liu
Sang Michael Xie
Zhiyuan Li
Tengyu Ma
AI4CE
135
55
0
25 Oct 2022
The Curious Case of Benign Memorization
Sotiris Anagnostidis
Gregor Bachmann
Lorenzo Noci
Thomas Hofmann
AAML
132
10
0
25 Oct 2022
A Kernel-Based View of Language Model Fine-Tuning
Sadhika Malladi
Alexander Wettig
Dingli Yu
Danqi Chen
Sanjeev Arora
VLM
157
69
0
11 Oct 2022
Contrastive Learning Can Find An Optimal Basis For Approximately View-Invariant Functions
Daniel D. Johnson
Ayoub El Hanchi
Chris J. Maddison
SSL
98
24
0
04 Oct 2022
What shapes the loss landscape of self-supervised learning?
Liu Ziyin
Ekdeep Singh Lubana
Masakuni Ueda
Hidenori Tanaka
105
21
0
02 Oct 2022
Improving Self-Supervised Learning by Characterizing Idealized Representations
Yann Dubois
Tatsunori Hashimoto
Stefano Ermon
Percy Liang
SSL
167
43
0
13 Sep 2022
Analyzing Data-Centric Properties for Graph Contrastive Learning
Puja Trivedi
Ekdeep Singh Lubana
Mark Heimann
Danai Koutra
Jayaraman J. Thiagarajan
103
11
0
04 Aug 2022
Integrating Prior Knowledge in Contrastive Learning with Kernel
Benoit Dufumier
C. Barbano
Robin Louiset
Edouard Duchesnay
Pietro Gori
SSL
71
8
0
03 Jun 2022
Understanding the Role of Nonlinearity in Training Dynamics of Contrastive Learning
Yuandong Tian
MLT
125
14
0
02 Jun 2022
Your Contrastive Learning Is Secretly Doing Stochastic Neighbor Embedding
Tianyang Hu
Zhili Liu
Fengwei Zhou
Wei Cao
Weiran Huang
SSL
105
28
0
30 May 2022
Orchestra: Unsupervised Federated Learning via Globally Consistent Clustering
Ekdeep Singh Lubana
Chi Ian Tang
F. Kawsar
Robert P. Dick
Akhil Mathur
FedML
75
54
0
23 May 2022
The Mechanism of Prediction Head in Non-contrastive Self-supervised Learning
Zixin Wen
Yuanzhi Li
SSL
116
35
0
12 May 2022
Do More Negative Samples Necessarily Hurt in Contrastive Learning?
Pranjal Awasthi
Nishanth Dikkala
Pritish Kamath
99
43
0
03 May 2022
Previous
1
2