ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.13903
  4. Cited By
Bayesian Structure Learning with Generative Flow Networks

Bayesian Structure Learning with Generative Flow Networks

28 February 2022
T. Deleu
António Góis
Chris C. Emezue
M. Rankawat
Simon Lacoste-Julien
Stefan Bauer
Yoshua Bengio
    BDL
ArXivPDFHTML

Papers citing "Bayesian Structure Learning with Generative Flow Networks"

50 / 112 papers shown
Title
Generative Flow Networks as Entropy-Regularized RL
Generative Flow Networks as Entropy-Regularized RL
D. Tiapkin
Nikita Morozov
Alexey Naumov
Dmitry Vetrov
37
28
0
19 Oct 2023
PhyloGFN: Phylogenetic inference with generative flow networks
PhyloGFN: Phylogenetic inference with generative flow networks
Mingyang Zhou
Zichao Yan
Elliot Layne
Nikolay Malkin
Dinghuai Zhang
Moksh Jain
Mathieu Blanchette
Yoshua Bengio
24
16
0
12 Oct 2023
Causal structure learning with momentum: Sampling distributions over
  Markov Equivalence Classes of DAGs
Causal structure learning with momentum: Sampling distributions over Markov Equivalence Classes of DAGs
Moritz Schauer
Marcel Wienöbst
CML
17
2
0
09 Oct 2023
Amortizing intractable inference in large language models
Amortizing intractable inference in large language models
Marvin Schmitt
Moksh Jain
Daniel Habermann
Younesse Kaddar
Ullrich Kothe
Stefan T. Radev
Nikolay Malkin
AIFin
BDL
24
46
0
06 Oct 2023
Causal Inference in Gene Regulatory Networks with GFlowNet: Towards
  Scalability in Large Systems
Causal Inference in Gene Regulatory Networks with GFlowNet: Towards Scalability in Large Systems
Trang Nguyen
Alexander Tong
Kanika Madan
Yoshua Bengio
Dianbo Liu
17
4
0
05 Oct 2023
Pre-Training and Fine-Tuning Generative Flow Networks
Pre-Training and Fine-Tuning Generative Flow Networks
Ling Pan
Moksh Jain
Kanika Madan
Yoshua Bengio
42
13
0
05 Oct 2023
GRAPES: Learning to Sample Graphs for Scalable Graph Neural Networks
GRAPES: Learning to Sample Graphs for Scalable Graph Neural Networks
Taraneh Younesian
Daniel Daza
Emile van Krieken
Thiviyan Thanapalasingam
Peter Bloem
14
4
0
05 Oct 2023
Learning to Scale Logits for Temperature-Conditional GFlowNets
Learning to Scale Logits for Temperature-Conditional GFlowNets
Minsu Kim
Joohwan Ko
Taeyoung Yun
Dinghuai Zhang
Ling Pan
W. Kim
Jinkyoo Park
Emmanuel Bengio
Yoshua Bengio
AI4CE
25
21
0
04 Oct 2023
Expected flow networks in stochastic environments and two-player
  zero-sum games
Expected flow networks in stochastic environments and two-player zero-sum games
Marco Jiralerspong
Bilun Sun
Danilo Vucetic
Tianyu Zhang
Yoshua Bengio
Gauthier Gidel
Nikolay Malkin
31
5
0
04 Oct 2023
Local Search GFlowNets
Local Search GFlowNets
Minsu Kim
Taeyoung Yun
Emmanuel Bengio
Dinghuai Zhang
Yoshua Bengio
Sungsoo Ahn
Jinkyoo Park
24
33
0
04 Oct 2023
Diffusion Generative Flow Samplers: Improving learning signals through
  partial trajectory optimization
Diffusion Generative Flow Samplers: Improving learning signals through partial trajectory optimization
Dinghuai Zhang
Ricky Tian Qi Chen
Cheng-Hao Liu
Aaron C. Courville
Yoshua Bengio
26
40
0
04 Oct 2023
Delta-AI: Local objectives for amortized inference in sparse graphical
  models
Delta-AI: Local objectives for amortized inference in sparse graphical models
J. Falet
Hae Beom Lee
Nikolay Malkin
Chen Sun
Dragos Secrieru
Thomas Jiralerspong
Dinghuai Zhang
Guillaume Lajoie
Yoshua Bengio
44
6
0
03 Oct 2023
Order-Preserving GFlowNets
Order-Preserving GFlowNets
Yihang Chen
Lukas Mauch
27
9
0
30 Sep 2023
Causal Reasoning: Charting a Revolutionary Course for Next-Generation
  AI-Native Wireless Networks
Causal Reasoning: Charting a Revolutionary Course for Next-Generation AI-Native Wireless Networks
Christo Kurisummoottil Thomas
Christina Chaccour
Walid Saad
Merouane Debbah
C. Hong
21
20
0
23 Sep 2023
Human-in-the-Loop Causal Discovery under Latent Confounding using
  Ancestral GFlowNets
Human-in-the-Loop Causal Discovery under Latent Confounding using Ancestral GFlowNets
Tiago da Silva
Eliezer de Souza da Silva
Adèle Ribeiro
António Góis
Dominik Heider
Samuel Kaski
Diego Mesquita
CML
43
6
0
21 Sep 2023
Differentiable Bayesian Structure Learning with Acyclicity Assurance
Differentiable Bayesian Structure Learning with Acyclicity Assurance
Quang-Duy Tran
Phuoc Nguyen
Bao Duong
Thin Nguyen
32
2
0
04 Sep 2023
BayesDAG: Gradient-Based Posterior Inference for Causal Discovery
BayesDAG: Gradient-Based Posterior Inference for Causal Discovery
Yashas Annadani
Nick Pawlowski
Joel Jennings
Stefan Bauer
Cheng Zhang
Wenbo Gong
CML
BDL
8
17
0
26 Jul 2023
Benchmarking Bayesian Causal Discovery Methods for Downstream Treatment
  Effect Estimation
Benchmarking Bayesian Causal Discovery Methods for Downstream Treatment Effect Estimation
Chris C. Emezue
Alexandre Drouin
T. Deleu
Stefan Bauer
Yoshua Bengio
CML
35
2
0
11 Jul 2023
Generative Flow Networks: a Markov Chain Perspective
Generative Flow Networks: a Markov Chain Perspective
T. Deleu
Yoshua Bengio
BDL
21
8
0
04 Jul 2023
Thompson sampling for improved exploration in GFlowNets
Thompson sampling for improved exploration in GFlowNets
Jarrid Rector-Brooks
Kanika Madan
Moksh Jain
Maksym Korablyov
Cheng-Hao Liu
Sarath Chandar
Nikolay Malkin
Yoshua Bengio
20
24
0
30 Jun 2023
Goal-conditioned GFlowNets for Controllable Multi-Objective Molecular
  Design
Goal-conditioned GFlowNets for Controllable Multi-Objective Molecular Design
Julien Roy
Pierre-Luc Bacon
C. Pal
Emmanuel Bengio
AI4CE
17
14
0
07 Jun 2023
Poisoning Network Flow Classifiers
Poisoning Network Flow Classifiers
Giorgio Severi
Simona Boboila
Alina Oprea
J. Holodnak
K. Kratkiewicz
J. Matterer
AAML
35
4
0
02 Jun 2023
Joint Bayesian Inference of Graphical Structure and Parameters with a
  Single Generative Flow Network
Joint Bayesian Inference of Graphical Structure and Parameters with a Single Generative Flow Network
T. Deleu
Mizu Nishikawa-Toomey
Jithendaraa Subramanian
Nikolay Malkin
Laurent Charlin
Yoshua Bengio
BDL
30
43
0
30 May 2023
Let the Flows Tell: Solving Graph Combinatorial Optimization Problems
  with GFlowNets
Let the Flows Tell: Solving Graph Combinatorial Optimization Problems with GFlowNets
Dinghuai Zhang
H. Dai
Nikolay Malkin
Aaron Courville
Yoshua Bengio
L. Pan
24
36
0
26 May 2023
torchgfn: A PyTorch GFlowNet library
torchgfn: A PyTorch GFlowNet library
Salem Lahlou
J. Viviano
Victor Schmidt
Yoshua Bengio
AI4CE
30
4
0
24 May 2023
Toward Falsifying Causal Graphs Using a Permutation-Based Test
Toward Falsifying Causal Graphs Using a Permutation-Based Test
Elias Eulig
Atalanti A. Mastakouri
Patrick Blobaum
Michael W. Hardt
Dominik Janzing
13
8
0
16 May 2023
Towards Understanding and Improving GFlowNet Training
Towards Understanding and Improving GFlowNet Training
Max W. Shen
Emmanuel Bengio
Ehsan Hajiramezanali
Andreas Loukas
Kyunghyun Cho
Tommaso Biancalani
11
48
0
11 May 2023
GFlowNets with Human Feedback
GFlowNets with Human Feedback
Yinchuan Li
Shuang Luo
Yunfeng Shao
Jianye Hao
AI4CE
13
5
0
11 May 2023
DAG Matters! GFlowNets Enhanced Explainer For Graph Neural Networks
DAG Matters! GFlowNets Enhanced Explainer For Graph Neural Networks
Wenqian Li
Yinchuan Li
Zhigang Li
Jianye Hao
Yan Pang
83
29
0
04 Mar 2023
CFlowNets: Continuous Control with Generative Flow Networks
CFlowNets: Continuous Control with Generative Flow Networks
Yinchuan Li
Shuang Luo
Haozhi Wang
Jianye Hao
81
20
0
04 Mar 2023
Differentiable Multi-Target Causal Bayesian Experimental Design
Differentiable Multi-Target Causal Bayesian Experimental Design
Yashas Annadani
P. Tigas
Desi R. Ivanova
Andrew Jesson
Y. Gal
Adam Foster
Stefan Bauer
BDL
CML
18
13
0
21 Feb 2023
Stochastic Generative Flow Networks
Stochastic Generative Flow Networks
L. Pan
Dinghuai Zhang
Moksh Jain
Longbo Huang
Yoshua Bengio
BDL
39
30
0
19 Feb 2023
GFlowNet-EM for learning compositional latent variable models
GFlowNet-EM for learning compositional latent variable models
J. E. Hu
Nikolay Malkin
Moksh Jain
Katie Everett
Alexandros Graikos
Yoshua Bengio
CoGe
24
38
0
13 Feb 2023
Distributional GFlowNets with Quantile Flows
Distributional GFlowNets with Quantile Flows
Dinghuai Zhang
L. Pan
Ricky T. Q. Chen
Aaron Courville
Yoshua Bengio
24
25
0
11 Feb 2023
DynGFN: Towards Bayesian Inference of Gene Regulatory Networks with
  GFlowNets
DynGFN: Towards Bayesian Inference of Gene Regulatory Networks with GFlowNets
Lazar Atanackovic
Alexander Tong
Bo Wang
Leo J. Lee
Yoshua Bengio
Jason S. Hartford
BDL
16
21
0
08 Feb 2023
Sample-efficient Multi-objective Molecular Optimization with GFlowNets
Sample-efficient Multi-objective Molecular Optimization with GFlowNets
Yiheng Zhu
Jialun Wu
Chaowen Hu
Jiahuan Yan
Chang-Yu Hsieh
Tingjun Hou
Jian Wu
19
32
0
08 Feb 2023
Aligning Robot and Human Representations
Aligning Robot and Human Representations
Andreea Bobu
Andi Peng
Pulkit Agrawal
Julie A. Shah
Anca D. Dragan
38
10
0
03 Feb 2023
Better Training of GFlowNets with Local Credit and Incomplete
  Trajectories
Better Training of GFlowNets with Local Credit and Incomplete Trajectories
L. Pan
Nikolay Malkin
Dinghuai Zhang
Yoshua Bengio
22
59
0
03 Feb 2023
GFlowNets for AI-Driven Scientific Discovery
GFlowNets for AI-Driven Scientific Discovery
Moksh Jain
T. Deleu
Jason S. Hartford
Cheng-Hao Liu
Alex Hernandez-Garcia
Yoshua Bengio
AI4CE
23
45
0
01 Feb 2023
A theory of continuous generative flow networks
A theory of continuous generative flow networks
Salem Lahlou
T. Deleu
Pablo Lemos
Dinghuai Zhang
Alexandra Volokhova
Alex Hernández-García
Léna Néhale Ezzine
Yoshua Bengio
Nikolay Malkin
AI4CE
33
79
0
30 Jan 2023
Robust Scheduling with GFlowNets
Robust Scheduling with GFlowNets
David W. Zhang
Corrado Rainone
M. Peschl
Roberto Bondesan
21
48
0
17 Jan 2023
Trust Your $\nabla$: Gradient-based Intervention Targeting for Causal
  Discovery
Trust Your ∇\nabla∇: Gradient-based Intervention Targeting for Causal Discovery
Mateusz Olko
Michal Zajac
A. Nowak
Nino Scherrer
Yashas Annadani
Stefan Bauer
Lukasz Kucinski
Piotr Milos
CML
27
2
0
24 Nov 2022
Reinforcement Causal Structure Learning on Order Graph
Reinforcement Causal Structure Learning on Order Graph
Dezhi Yang
Guoxian Yu
J. Wang
Zhe Wu
Maozu Guo
BDL
CML
26
16
0
22 Nov 2022
Bayesian learning of Causal Structure and Mechanisms with GFlowNets and
  Variational Bayes
Bayesian learning of Causal Structure and Mechanisms with GFlowNets and Variational Bayes
Mizu Nishikawa-Toomey
T. Deleu
Jithendaraa Subramanian
Yoshua Bengio
Laurent Charlin
BDL
CML
26
29
0
04 Nov 2022
Learning Discrete Directed Acyclic Graphs via Backpropagation
Learning Discrete Directed Acyclic Graphs via Backpropagation
A. Wren
Pasquale Minervini
Luca Franceschi
Valentina Zantedeschi
19
2
0
27 Oct 2022
Learning Latent Structural Causal Models
Learning Latent Structural Causal Models
Jithendaraa Subramanian
Yashas Annadani
Ivaxi Sheth
Nan Rosemary Ke
T. Deleu
Stefan Bauer
Derek Nowrouzezahrai
Samira Ebrahimi Kahou
CML
24
7
0
24 Oct 2022
GFlowOut: Dropout with Generative Flow Networks
GFlowOut: Dropout with Generative Flow Networks
Dianbo Liu
Moksh Jain
Bonaventure F. P. Dossou
Qianli Shen
Salem Lahlou
...
Dinghuai Zhang
N. Hassen
Xu Ji
Kenji Kawaguchi
Yoshua Bengio
UQCV
BDL
OOD
25
20
0
24 Oct 2022
Neuro-Symbolic Causal Reasoning Meets Signaling Game for Emergent
  Semantic Communications
Neuro-Symbolic Causal Reasoning Meets Signaling Game for Emergent Semantic Communications
Christo Kurisummoottil Thomas
Walid Saad
24
31
0
21 Oct 2022
GFlowCausal: Generative Flow Networks for Causal Discovery
GFlowCausal: Generative Flow Networks for Causal Discovery
Wenqian Li
Yinchuan Li
Shengyu Zhu
Yunfeng Shao
Jianye Hao
Yan Pang
BDL
CML
11
12
0
15 Oct 2022
A Variational Perspective on Generative Flow Networks
A Variational Perspective on Generative Flow Networks
Heiko Zimmermann
Fredrik Lindsten
Jan Willem van de Meent
C. A. Naesseth
17
32
0
14 Oct 2022
Previous
123
Next