ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.12813
  4. Cited By
Causal discovery for observational sciences using supervised machine
  learning

Causal discovery for observational sciences using supervised machine learning

25 February 2022
A. H. Petersen
Joseph Ramsey
C. Ekstrøm
Peter Spirtes
    CML
ArXivPDFHTML

Papers citing "Causal discovery for observational sciences using supervised machine learning"

9 / 9 papers shown
Title
Learning Identifiable Structures Helps Avoid Bias in DNN-based Supervised Causal Learning
Learning Identifiable Structures Helps Avoid Bias in DNN-based Supervised Causal Learning
Jiaru Zhang
Rui Ding
Qiang Fu
Bojun Huang
Zizhen Deng
Yang Hua
Haibing Guan
Shi Han
Dongmei Zhang
CML
46
0
0
15 Feb 2025
Embracing the black box: Heading towards foundation models for causal
  discovery from time series data
Embracing the black box: Heading towards foundation models for causal discovery from time series data
Gideon Stein
M. Shadaydeh
Joachim Denzler
CML
AI4TS
10
1
0
14 Feb 2024
Sample, estimate, aggregate: A recipe for causal discovery foundation models
Sample, estimate, aggregate: A recipe for causal discovery foundation models
Menghua Wu
Yujia Bao
Regina Barzilay
Tommi Jaakkola
CML
41
7
0
02 Feb 2024
Learned Causal Method Prediction
Learned Causal Method Prediction
Shantanu Gupta
Cheng Zhang
Agrin Hilmkil
OOD
31
2
0
07 Nov 2023
Causal Discovery from Temporal Data: An Overview and New Perspectives
Causal Discovery from Temporal Data: An Overview and New Perspectives
Chang Gong
Di Yao
Chuzhe Zhang
Wenbin Li
Jingping Bi
AI4TS
CML
16
17
0
17 Mar 2023
On the Unlikelihood of D-Separation
On the Unlikelihood of D-Separation
Itai Feigenbaum
Haiquan Wang
Shelby Heinecke
Juan Carlos Niebles
Weiran Yao
Caiming Xiong
Devansh Arpit
CML
18
1
0
10 Mar 2023
Log-Paradox: Necessary and sufficient conditions for confounding
  statistically significant pattern reversal under the log-transform
Log-Paradox: Necessary and sufficient conditions for confounding statistically significant pattern reversal under the log-transform
Ben Cardoen
Hanene Ben Yedder
Sieun Lee
I. Nabi
Ghassan Hamarneh
MedIm
40
0
0
09 Feb 2023
Learning Sparse Nonparametric DAGs
Learning Sparse Nonparametric DAGs
Xun Zheng
Chen Dan
Bryon Aragam
Pradeep Ravikumar
Eric P. Xing
CML
101
258
0
29 Sep 2019
Causal Inference and Causal Explanation with Background Knowledge
Causal Inference and Causal Explanation with Background Knowledge
Christopher Meek
CML
216
626
0
20 Feb 2013
1