Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2202.12358
Cited By
Physics Informed RNN-DCT Networks for Time-Dependent Partial Differential Equations
24 February 2022
Benwei Wu
O. Hennigh
Jan Kautz
S. Choudhry
Wonmin Byeon
MLAU
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Physics Informed RNN-DCT Networks for Time-Dependent Partial Differential Equations"
6 / 6 papers shown
Title
BO-SA-PINNs: Self-adaptive physics-informed neural networks based on Bayesian optimization for automatically designing PDE solvers
Rui Zhang
Liang Li
Stéphane Lanteri
Hao Kang
Jiaqi Li
43
0
0
14 Apr 2025
Quantum Recurrent Neural Networks with Encoder-Decoder for Time-Dependent Partial Differential Equations
Yuan Chen
Abdul Khaliq
Khaled M. Furati
AI4CE
56
0
0
20 Feb 2025
Dual Cone Gradient Descent for Training Physics-Informed Neural Networks
Youngsik Hwang
Dong-Young Lim
AI4CE
32
2
0
27 Sep 2024
NVIDIA SimNet^{TM}: an AI-accelerated multi-physics simulation framework
O. Hennigh
S. Narasimhan
M. A. Nabian
Akshay Subramaniam
Kaustubh Tangsali
M. Rietmann
J. Ferrandis
Wonmin Byeon
Z. Fang
S. Choudhry
PINN
AI4CE
93
126
0
14 Dec 2020
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
226
2,287
0
18 Oct 2020
MeshfreeFlowNet: A Physics-Constrained Deep Continuous Space-Time Super-Resolution Framework
C. Jiang
S. Esmaeilzadeh
Kamyar Azizzadenesheli
K. Kashinath
Mustafa A. Mustafa
H. Tchelepi
P. Marcus
P. Prabhat
Anima Anandkumar
AI4CE
187
141
0
01 May 2020
1