Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2202.12316
Cited By
AutoIP: A United Framework to Integrate Physics into Gaussian Processes
24 February 2022
D. Long
Zhilin Wang
Aditi S. Krishnapriyan
Robert M. Kirby
Shandian Zhe
Michael W. Mahoney
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"AutoIP: A United Framework to Integrate Physics into Gaussian Processes"
12 / 12 papers shown
Title
Understanding Generalization in Physics Informed Models through Affine Variety Dimensions
Takeshi Koshizuka
Issei Sato
AI4CE
112
0
0
31 Jan 2025
Physics-Informed Variational State-Space Gaussian Processes
Oliver Hamelijnck
Arno Solin
Theodoros Damoulas
31
0
0
20 Sep 2024
Gaussian Measures Conditioned on Nonlinear Observations: Consistency, MAP Estimators, and Simulation
Yifan Chen
Bamdad Hosseini
H. Owhadi
Andrew M. Stuart
65
1
0
21 May 2024
Iterated INLA for State and Parameter Estimation in Nonlinear Dynamical Systems
Rafael Anderka
M. Deisenroth
So Takao
25
1
0
26 Feb 2024
Domain Invariant Learning for Gaussian Processes and Bayesian Exploration
Xilong Zhao
Siyuan Bian
Yaoyun Zhang
Yuliang Zhang
Qinying Gu
Xinbing Wang
Cheng Zhou
Nanyang Ye
29
1
0
18 Dec 2023
Solving High Frequency and Multi-Scale PDEs with Gaussian Processes
Shikai Fang
Madison Cooley
Da Long
Shibo Li
R. Kirby
Shandian Zhe
40
4
0
08 Nov 2023
Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels
Da Long
Wei W. Xing
Aditi S. Krishnapriyan
R. Kirby
Shandian Zhe
Michael W. Mahoney
18
0
0
09 Oct 2023
Physics-aware Machine Learning Revolutionizes Scientific Paradigm for Machine Learning and Process-based Hydrology
Qingsong Xu
Yilei Shi
Jonathan Bamber
Ye Tuo
Ralf Ludwig
Xiao Xiang Zhu
AI4CE
20
10
0
08 Oct 2023
A spectrum of physics-informed Gaussian processes for regression in engineering
E. Cross
T. Rogers
D. J. Pitchforth
S. Gibson
Matthew R. Jones
24
8
0
19 Sep 2023
Error Analysis of Kernel/GP Methods for Nonlinear and Parametric PDEs
Pau Batlle
Yifan Chen
Bamdad Hosseini
H. Owhadi
Andrew M. Stuart
34
17
0
08 May 2023
Random Grid Neural Processes for Parametric Partial Differential Equations
Arnaud Vadeboncoeur
Ieva Kazlauskaite
Y. Papandreou
F. Cirak
Mark Girolami
Ömer Deniz Akyildiz
AI4CE
28
11
0
26 Jan 2023
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,138
0
06 Jun 2015
1