ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.11954
  4. Cited By
XAutoML: A Visual Analytics Tool for Understanding and Validating
  Automated Machine Learning

XAutoML: A Visual Analytics Tool for Understanding and Validating Automated Machine Learning

24 February 2022
Marc-André Zöller
Waldemar Titov
T. Schlegel
Marco F. Huber
    HAI
ArXivPDFHTML

Papers citing "XAutoML: A Visual Analytics Tool for Understanding and Validating Automated Machine Learning"

18 / 18 papers shown
Title
AlphaD3M: Machine Learning Pipeline Synthesis
AlphaD3M: Machine Learning Pipeline Synthesis
Iddo Drori
Yamuna Krishnamurthy
Rémi Rampin
Raoni Lourenço
Jorge Piazentin Ono
Kyunghyun Cho
Claudio Silva
J. Freire
52
85
0
03 Nov 2021
How Much Automation Does a Data Scientist Want?
How Much Automation Does a Data Scientist Want?
Dakuo Wang
Q. V. Liao
Yunfeng Zhang
Udayan Khurana
Horst Samulowitz
Soya Park
Michael J. Muller
Lisa Amini
AI4CE
62
55
0
07 Jan 2021
Amazon SageMaker Autopilot: a white box AutoML solution at scale
Amazon SageMaker Autopilot: a white box AutoML solution at scale
Piali Das
Laurence Rouesnel
Nikita Ivkin
Tanya Bansal
Zohar Karnin
...
Giovanni Zappella
Cedric Archembeau
Matthias Seeger
Bhaskar Dutt
K. Venkateswar
47
69
0
15 Dec 2020
Beyond Accuracy: Behavioral Testing of NLP models with CheckList
Beyond Accuracy: Behavioral Testing of NLP models with CheckList
Marco Tulio Ribeiro
Tongshuang Wu
Carlos Guestrin
Sameer Singh
ELM
196
1,100
0
08 May 2020
AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data
AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data
Nick Erickson
Jonas W. Mueller
Alexander Shirkov
Hang Zhang
Pedro Larroy
Mu Li
Alex Smola
LMTD
179
621
0
13 Mar 2020
Questioning the AI: Informing Design Practices for Explainable AI User
  Experiences
Questioning the AI: Informing Design Practices for Explainable AI User Experiences
Q. V. Liao
D. Gruen
Sarah Miller
117
715
0
08 Jan 2020
FLAML: A Fast and Lightweight AutoML Library
FLAML: A Fast and Lightweight AutoML Library
Chi Wang
Qingyun Wu
Markus Weimer
Erkang Zhu
68
203
0
12 Nov 2019
Auptimizer -- an Extensible, Open-Source Framework for Hyperparameter
  Tuning
Auptimizer -- an Extensible, Open-Source Framework for Hyperparameter Tuning
Jiayi Liu
S. Tripathi
Unmesh Kurup
Mohak Shah
39
18
0
06 Nov 2019
explAIner: A Visual Analytics Framework for Interactive and Explainable
  Machine Learning
explAIner: A Visual Analytics Framework for Interactive and Explainable Machine Learning
Thilo Spinner
U. Schlegel
H. Schäfer
Mennatallah El-Assady
HAI
59
237
0
29 Jul 2019
Optuna: A Next-generation Hyperparameter Optimization Framework
Optuna: A Next-generation Hyperparameter Optimization Framework
Takuya Akiba
Shotaro Sano
Toshihiko Yanase
Takeru Ohta
Masanori Koyama
583
5,769
0
25 Jul 2019
Conditional Parallel Coordinates
Conditional Parallel Coordinates
D. Weidele
33
17
0
18 Jun 2019
A User-based Visual Analytics Workflow for Exploratory Model Analysis
A User-based Visual Analytics Workflow for Exploratory Model Analysis
Dylan Cashman
S. Humayoun
Florian Heimerl
Kendall Park
Subhajit Das
...
Abigail Mosca
J. Stasko
Alex Endert
Michael Gleicher
Remco Chang
38
41
0
27 Sep 2018
BOHB: Robust and Efficient Hyperparameter Optimization at Scale
BOHB: Robust and Efficient Hyperparameter Optimization at Scale
Stefan Falkner
Aaron Klein
Frank Hutter
BDL
191
1,093
0
04 Jul 2018
Autostacker: A Compositional Evolutionary Learning System
Autostacker: A Compositional Evolutionary Learning System
Boyuan Chen
Harvey Wu
Warren Mo
I. Chattopadhyay
Hod Lipson
BDL
41
84
0
02 Mar 2018
The Mythos of Model Interpretability
The Mythos of Model Interpretability
Zachary Chase Lipton
FaML
166
3,685
0
10 Jun 2016
Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization
Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization
Lisha Li
Kevin Jamieson
Giulia DeSalvo
Afshin Rostamizadeh
Ameet Talwalkar
211
2,321
0
21 Mar 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
1.0K
16,931
0
16 Feb 2016
ParamILS: An Automatic Algorithm Configuration Framework
ParamILS: An Automatic Algorithm Configuration Framework
Frank Hutter
Thomas Stuetzle
Kevin Leyton-Brown
T. Stützle
80
1,066
0
15 Jan 2014
1