Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2202.11783
Cited By
v1
v2
v3 (latest)
Adversarially-regularized mixed effects deep learning (ARMED) models for improved interpretability, performance, and generalization on clustered data
23 February 2022
K. Nguyen
A. Montillo
FedML
AAML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Adversarially-regularized mixed effects deep learning (ARMED) models for improved interpretability, performance, and generalization on clustered data"
7 / 7 papers shown
Title
Fairness-enhancing mixed effects deep learning improves fairness on in- and out-of-distribution clustered (non-iid) data
Adam Wang
Son Nguyen
A. Montillo
FedML
63
1
0
31 Dec 2024
Enabling Mixed Effects Neural Networks for Diverse, Clustered Data Using Monte Carlo Methods
Andrej Tschalzev
Paul Nitschke
Lukas Kirchdorfer
Stefan Lüdtke
Christian Bartelt
Heiner Stuckenschmidt
81
0
0
01 Jul 2024
Enhancing MRI-Based Classification of Alzheimer's Disease with Explainable 3D Hybrid Compact Convolutional Transformers
Arindam Majee
Avisek Gupta
S. Raha
Swagatam Das
MedIm
62
2
0
24 Mar 2024
A Survey on Domain Generalization for Medical Image Analysis
Ziwei Niu
Shuyi Ouyang
Shiao Xie
Yen-wei Chen
Lanfen Lin
OOD
LM&MA
90
5
0
07 Feb 2024
Domain Generalization for Medical Image Analysis: A Survey
Jee Seok Yoon
Kwanseok Oh
Yooseung Shin
Maciej A Mazurowski
Heung-Il Suk
LM&MA
OOD
87
13
0
05 Oct 2023
UQ-ARMED: Uncertainty quantification of adversarially-regularized mixed effects deep learning for clustered non-iid data
A. Treacher
K. Nguyen
Dylan A. Owens
D. Heitjan
A. Montillo
FedML
19
0
0
29 Nov 2022
Adversarial Discriminative Domain Adaptation
Eric Tzeng
Judy Hoffman
Kate Saenko
Trevor Darrell
GAN
OOD
296
4,685
0
17 Feb 2017
1