ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.09357
  4. Cited By
ProxSkip: Yes! Local Gradient Steps Provably Lead to Communication
  Acceleration! Finally!
v1v2 (latest)

ProxSkip: Yes! Local Gradient Steps Provably Lead to Communication Acceleration! Finally!

18 February 2022
Konstantin Mishchenko
Grigory Malinovsky
Sebastian U. Stich
Peter Richtárik
ArXiv (abs)PDFHTML

Papers citing "ProxSkip: Yes! Local Gradient Steps Provably Lead to Communication Acceleration! Finally!"

42 / 42 papers shown
Title
Pseudo-Asynchronous Local SGD: Robust and Efficient Data-Parallel Training
Pseudo-Asynchronous Local SGD: Robust and Efficient Data-Parallel Training
Hiroki Naganuma
Xinzhi Zhang
Man-Chung Yue
Ioannis Mitliagkas
Philipp A. Witte
Russell J. Hewett
Yin Tat Lee
222
0
0
25 Apr 2025
Revisiting LocalSGD and SCAFFOLD: Improved Rates and Missing Analysis
Revisiting LocalSGD and SCAFFOLD: Improved Rates and Missing Analysis
Ruichen Luo
Sebastian U Stich
Samuel Horváth
Martin Takáč
116
0
0
08 Jan 2025
Sketched Adaptive Federated Deep Learning: A Sharp Convergence Analysis
Sketched Adaptive Federated Deep Learning: A Sharp Convergence Analysis
Zhijie Chen
Qiaobo Li
A. Banerjee
FedML
90
0
0
11 Nov 2024
FedPeWS: Personalized Warmup via Subnetworks for Enhanced Heterogeneous Federated Learning
FedPeWS: Personalized Warmup via Subnetworks for Enhanced Heterogeneous Federated Learning
Nurbek Tastan
Samuel Horváth
Martin Takáč
Karthik Nandakumar
FedML
128
0
0
03 Oct 2024
A-FedPD: Aligning Dual-Drift is All Federated Primal-Dual Learning Needs
A-FedPD: Aligning Dual-Drift is All Federated Primal-Dual Learning Needs
Yan Sun
Li Shen
Dacheng Tao
FedML
78
0
0
27 Sep 2024
LoCoDL: Communication-Efficient Distributed Learning with Local Training and Compression
LoCoDL: Communication-Efficient Distributed Learning with Local Training and Compression
Laurent Condat
Artavazd Maranjyan
Peter Richtárik
116
5
0
07 Mar 2024
Stochastic Controlled Averaging for Federated Learning with
  Communication Compression
Stochastic Controlled Averaging for Federated Learning with Communication Compression
Xinmeng Huang
Ping Li
Xiaoyun Li
96
209
0
16 Aug 2023
Lower Bounds and Accelerated Algorithms in Distributed Stochastic Optimization with Communication Compression
Lower Bounds and Accelerated Algorithms in Distributed Stochastic Optimization with Communication Compression
Yutong He
Xinmeng Huang
Yiming Chen
W. Yin
Kun Yuan
72
7
0
12 May 2023
SLowcal-SGD: Slow Query Points Improve Local-SGD for Stochastic Convex Optimization
SLowcal-SGD: Slow Query Points Improve Local-SGD for Stochastic Convex Optimization
Kfir Y. Levy
Kfir Y. Levy
FedML
88
3
0
09 Apr 2023
Stochastic Gradient Descent-Ascent: Unified Theory and New Efficient
  Methods
Stochastic Gradient Descent-Ascent: Unified Theory and New Efficient Methods
Aleksandr Beznosikov
Eduard A. Gorbunov
Hugo Berard
Nicolas Loizou
73
50
0
15 Feb 2022
An Improved Analysis of Gradient Tracking for Decentralized Machine
  Learning
An Improved Analysis of Gradient Tracking for Decentralized Machine Learning
Anastasia Koloskova
Tao R. Lin
Sebastian U. Stich
67
110
0
08 Feb 2022
RelaySum for Decentralized Deep Learning on Heterogeneous Data
RelaySum for Decentralized Deep Learning on Heterogeneous Data
Thijs Vogels
Lie He
Anastasia Koloskova
Tao R. Lin
Sai Praneeth Karimireddy
Sebastian U. Stich
Martin Jaggi
FedMLMoE
51
62
0
08 Oct 2021
Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
  Decentralized Optimization Over Time-Varying Networks
Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex Decentralized Optimization Over Time-Varying Networks
D. Kovalev
Elnur Gasanov
Peter Richtárik
Alexander Gasnikov
53
44
0
08 Jun 2021
Removing Data Heterogeneity Influence Enhances Network Topology
  Dependence of Decentralized SGD
Removing Data Heterogeneity Influence Enhances Network Topology Dependence of Decentralized SGD
Kun Yuan
Sulaiman A. Alghunaim
Xinmeng Huang
50
35
0
17 May 2021
ADOM: Accelerated Decentralized Optimization Method for Time-Varying
  Networks
ADOM: Accelerated Decentralized Optimization Method for Time-Varying Networks
D. Kovalev
Egor Shulgin
Peter Richtárik
Alexander Rogozin
Alexander Gasnikov
ODL
64
31
0
18 Feb 2021
Linear Convergence in Federated Learning: Tackling Client Heterogeneity
  and Sparse Gradients
Linear Convergence in Federated Learning: Tackling Client Heterogeneity and Sparse Gradients
A. Mitra
Rayana H. Jaafar
George J. Pappas
Hamed Hassani
FedML
101
159
0
14 Feb 2021
Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
  Heterogeneous Data
Quasi-Global Momentum: Accelerating Decentralized Deep Learning on Heterogeneous Data
Tao R. Lin
Sai Praneeth Karimireddy
Sebastian U. Stich
Martin Jaggi
FedML
89
101
0
09 Feb 2021
The Min-Max Complexity of Distributed Stochastic Convex Optimization
  with Intermittent Communication
The Min-Max Complexity of Distributed Stochastic Convex Optimization with Intermittent Communication
Blake E. Woodworth
Brian Bullins
Ohad Shamir
Nathan Srebro
38
49
0
02 Feb 2021
Local SGD: Unified Theory and New Efficient Methods
Local SGD: Unified Theory and New Efficient Methods
Eduard A. Gorbunov
Filip Hanzely
Peter Richtárik
FedML
82
111
0
03 Nov 2020
Lower Bounds and Optimal Algorithms for Personalized Federated Learning
Lower Bounds and Optimal Algorithms for Personalized Federated Learning
Filip Hanzely
Slavomír Hanzely
Samuel Horváth
Peter Richtárik
FedML
120
190
0
05 Oct 2020
Distributed Proximal Splitting Algorithms with Rates and Acceleration
Distributed Proximal Splitting Algorithms with Rates and Acceleration
Laurent Condat
Grigory Malinovsky
Peter Richtárik
36
21
0
02 Oct 2020
Optimal and Practical Algorithms for Smooth and Strongly Convex
  Decentralized Optimization
Optimal and Practical Algorithms for Smooth and Strongly Convex Decentralized Optimization
D. Kovalev
Adil Salim
Peter Richtárik
43
83
0
21 Jun 2020
Federated Accelerated Stochastic Gradient Descent
Federated Accelerated Stochastic Gradient Descent
Honglin Yuan
Tengyu Ma
FedML
67
180
0
16 Jun 2020
Minibatch vs Local SGD for Heterogeneous Distributed Learning
Minibatch vs Local SGD for Heterogeneous Distributed Learning
Blake E. Woodworth
Kumar Kshitij Patel
Nathan Srebro
FedML
114
203
0
08 Jun 2020
From Local SGD to Local Fixed-Point Methods for Federated Learning
From Local SGD to Local Fixed-Point Methods for Federated Learning
Grigory Malinovsky
D. Kovalev
Elnur Gasanov
Laurent Condat
Peter Richtárik
FedML
126
117
0
03 Apr 2020
A Unified Theory of Decentralized SGD with Changing Topology and Local
  Updates
A Unified Theory of Decentralized SGD with Changing Topology and Local Updates
Anastasia Koloskova
Nicolas Loizou
Sadra Boreiri
Martin Jaggi
Sebastian U. Stich
FedML
85
514
0
23 Mar 2020
Is Local SGD Better than Minibatch SGD?
Is Local SGD Better than Minibatch SGD?
Blake E. Woodworth
Kumar Kshitij Patel
Sebastian U. Stich
Zhen Dai
Brian Bullins
H. B. McMahan
Ohad Shamir
Nathan Srebro
FedML
74
254
0
18 Feb 2020
Federated Learning of a Mixture of Global and Local Models
Federated Learning of a Mixture of Global and Local Models
Filip Hanzely
Peter Richtárik
FedML
59
385
0
10 Feb 2020
Better Theory for SGD in the Nonconvex World
Better Theory for SGD in the Nonconvex World
Ahmed Khaled
Peter Richtárik
74
185
0
09 Feb 2020
Advances and Open Problems in Federated Learning
Advances and Open Problems in Federated Learning
Peter Kairouz
H. B. McMahan
Brendan Avent
A. Bellet
M. Bennis
...
Zheng Xu
Qiang Yang
Felix X. Yu
Han Yu
Sen Zhao
FedMLAI4CE
259
6,276
0
10 Dec 2019
Tighter Theory for Local SGD on Identical and Heterogeneous Data
Tighter Theory for Local SGD on Identical and Heterogeneous Data
Ahmed Khaled
Konstantin Mishchenko
Peter Richtárik
74
435
0
10 Sep 2019
First Analysis of Local GD on Heterogeneous Data
First Analysis of Local GD on Heterogeneous Data
Ahmed Khaled
Konstantin Mishchenko
Peter Richtárik
FedML
72
172
0
10 Sep 2019
SGD: General Analysis and Improved Rates
SGD: General Analysis and Improved Rates
Robert Mansel Gower
Nicolas Loizou
Xun Qian
Alibek Sailanbayev
Egor Shulgin
Peter Richtárik
84
380
0
27 Jan 2019
Don't Use Large Mini-Batches, Use Local SGD
Don't Use Large Mini-Batches, Use Local SGD
Tao R. Lin
Sebastian U. Stich
Kumar Kshitij Patel
Martin Jaggi
119
432
0
22 Aug 2018
Local SGD Converges Fast and Communicates Little
Local SGD Converges Fast and Communicates Little
Sebastian U. Stich
FedML
186
1,067
0
24 May 2018
D$^2$: Decentralized Training over Decentralized Data
D2^22: Decentralized Training over Decentralized Data
Hanlin Tang
Xiangru Lian
Ming Yan
Ce Zhang
Ji Liu
39
352
0
19 Mar 2018
Ray: A Distributed Framework for Emerging AI Applications
Ray: A Distributed Framework for Emerging AI Applications
Philipp Moritz
Robert Nishihara
Stephanie Wang
Alexey Tumanov
Richard Liaw
...
Melih Elibol
Zongheng Yang
William Paul
Michael I. Jordan
Ion Stoica
GNN
105
1,266
0
16 Dec 2017
Federated Learning: Strategies for Improving Communication Efficiency
Federated Learning: Strategies for Improving Communication Efficiency
Jakub Konecný
H. B. McMahan
Felix X. Yu
Peter Richtárik
A. Suresh
Dave Bacon
FedML
309
4,649
0
18 Oct 2016
Parallel SGD: When does averaging help?
Parallel SGD: When does averaging help?
Jian Zhang
Christopher De Sa
Ioannis Mitliagkas
Christopher Ré
MoMeFedML
77
109
0
23 Jun 2016
NEXT: In-Network Nonconvex Optimization
NEXT: In-Network Nonconvex Optimization
P. Lorenzo
G. Scutari
103
508
0
01 Feb 2016
Communication Complexity of Distributed Convex Learning and Optimization
Communication Complexity of Distributed Convex Learning and Optimization
Yossi Arjevani
Ohad Shamir
97
209
0
05 Jun 2015
Optimal Distributed Online Prediction using Mini-Batches
Optimal Distributed Online Prediction using Mini-Batches
O. Dekel
Ran Gilad-Bachrach
Ohad Shamir
Lin Xiao
273
685
0
07 Dec 2010
1