Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2202.09340
Cited By
Learning Physics-Informed Neural Networks without Stacked Back-propagation
18 February 2022
Di He
Shanda Li
Wen-Wu Shi
Xiaotian Gao
Jia Zhang
Jiang Bian
Liwei Wang
Tie-Yan Liu
DiffM
PINN
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning Physics-Informed Neural Networks without Stacked Back-propagation"
7 / 7 papers shown
Title
Stochastic Taylor Derivative Estimator: Efficient amortization for arbitrary differential operators
Zekun Shi
Zheyuan Hu
Min Lin
Kenji Kawaguchi
383
8
0
27 Nov 2024
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
497
2,414
0
18 Oct 2020
A Primer on Zeroth-Order Optimization in Signal Processing and Machine Learning
Sijia Liu
Pin-Yu Chen
B. Kailkhura
Gaoyuan Zhang
A. Hero III
P. Varshney
70
231
0
11 Jun 2020
On the convergence of physics informed neural networks for linear second-order elliptic and parabolic type PDEs
Yeonjong Shin
Jérome Darbon
George Karniadakis
PINN
62
79
0
03 Apr 2020
MACER: Attack-free and Scalable Robust Training via Maximizing Certified Radius
Runtian Zhai
Chen Dan
Di He
Huan Zhang
Boqing Gong
Pradeep Ravikumar
Cho-Jui Hsieh
Liwei Wang
OOD
AAML
87
177
0
08 Jan 2020
Certified Adversarial Robustness via Randomized Smoothing
Jeremy M. Cohen
Elan Rosenfeld
J. Zico Kolter
AAML
150
2,039
0
08 Feb 2019
PDE-Net: Learning PDEs from Data
Zichao Long
Yiping Lu
Xianzhong Ma
Bin Dong
DiffM
AI4CE
43
756
0
26 Oct 2017
1