Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2202.08835
Cited By
v1
v2 (latest)
General Cyclical Training of Neural Networks
17 February 2022
L. Smith
Re-assign community
ArXiv (abs)
PDF
HTML
Github (95★)
Papers citing
"General Cyclical Training of Neural Networks"
34 / 34 papers shown
Title
Cyclical Focal Loss
L. Smith
60
14
0
16 Feb 2022
Automated Deep Learning: Neural Architecture Search Is Not the End
Xuanyi Dong
D. Kedziora
Katarzyna Musial
Bogdan Gabrys
117
27
0
16 Dec 2021
A survey on multi-objective hyperparameter optimization algorithms for Machine Learning
A. Hernández
I. Nieuwenhuyse
Sebastian Rojas Gonzalez
72
103
0
23 Nov 2021
Which Samples Should be Learned First: Easy or Hard?
Xiaoling Zhou
Ou Wu
69
17
0
11 Oct 2021
HPOBench: A Collection of Reproducible Multi-Fidelity Benchmark Problems for HPO
Katharina Eggensperger
Philip Muller
Neeratyoy Mallik
Matthias Feurer
René Sass
Aaron Klein
Noor H. Awad
Marius Lindauer
Frank Hutter
221
104
0
14 Sep 2021
Hyperparameter Optimization: Foundations, Algorithms, Best Practices and Open Challenges
B. Bischl
Martin Binder
Michel Lang
Tobias Pielok
Jakob Richter
...
Theresa Ullmann
Marc Becker
A. Boulesteix
Difan Deng
Marius Lindauer
245
503
0
13 Jul 2021
A Survey on Data Augmentation for Text Classification
Markus Bayer
M. Kaufhold
Christian A. Reuter
145
354
0
07 Jul 2021
Understanding Decoupled and Early Weight Decay
Johan Bjorck
Kilian Q. Weinberger
Carla P. Gomes
52
25
0
27 Dec 2020
Building One-Shot Semi-supervised (BOSS) Learning up to Fully Supervised Performance
L. Smith
A. Conovaloff
SSL
62
8
0
16 Jun 2020
On the training dynamics of deep networks with
L
2
L_2
L
2
regularization
Aitor Lewkowycz
Guy Gur-Ari
96
54
0
15 Jun 2020
TResNet: High Performance GPU-Dedicated Architecture
T. Ridnik
Hussam Lawen
Asaf Noy
Emanuel Ben-Baruch
Gilad Sharir
Itamar Friedman
OOD
97
214
0
30 Mar 2020
The Early Phase of Neural Network Training
Jonathan Frankle
D. Schwab
Ari S. Morcos
89
174
0
24 Feb 2020
Teacher algorithms for curriculum learning of Deep RL in continuously parameterized environments
Rémy Portelas
Cédric Colas
Katja Hofmann
Pierre-Yves Oudeyer
68
146
0
16 Oct 2019
RandAugment: Practical automated data augmentation with a reduced search space
E. D. Cubuk
Barret Zoph
Jonathon Shlens
Quoc V. Le
MQ
273
3,508
0
30 Sep 2019
Adaptive Weight Decay for Deep Neural Networks
Kensuke Nakamura
Byung-Woo Hong
58
43
0
21 Jul 2019
Time Matters in Regularizing Deep Networks: Weight Decay and Data Augmentation Affect Early Learning Dynamics, Matter Little Near Convergence
Aditya Golatkar
Alessandro Achille
Stefano Soatto
80
97
0
30 May 2019
Be Your Own Teacher: Improve the Performance of Convolutional Neural Networks via Self Distillation
Linfeng Zhang
Jiebo Song
Anni Gao
Jingwei Chen
Chenglong Bao
Kaisheng Ma
FedML
76
865
0
17 May 2019
Benchmarking Neural Network Robustness to Common Corruptions and Perturbations
Dan Hendrycks
Thomas G. Dietterich
OOD
VLM
196
3,458
0
28 Mar 2019
Three Mechanisms of Weight Decay Regularization
Guodong Zhang
Chaoqi Wang
Bowen Xu
Roger C. Grosse
75
259
0
29 Oct 2018
AutoAugment: Learning Augmentation Policies from Data
E. D. Cubuk
Barret Zoph
Dandelion Mané
Vijay Vasudevan
Quoc V. Le
135
1,775
0
24 May 2018
Visualizing the Loss Landscape of Neural Nets
Hao Li
Zheng Xu
Gavin Taylor
Christoph Studer
Tom Goldstein
266
1,901
0
28 Dec 2017
MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks on Corrupted Labels
Lu Jiang
Zhengyuan Zhou
Thomas Leung
Li Li
Li Fei-Fei
NoLa
133
1,459
0
14 Dec 2017
Don't Decay the Learning Rate, Increase the Batch Size
Samuel L. Smith
Pieter-Jan Kindermans
Chris Ying
Quoc V. Le
ODL
117
996
0
01 Nov 2017
mixup: Beyond Empirical Risk Minimization
Hongyi Zhang
Moustapha Cissé
Yann N. Dauphin
David Lopez-Paz
NoLa
316
9,815
0
25 Oct 2017
Improved Regularization of Convolutional Neural Networks with Cutout
Terrance Devries
Graham W. Taylor
137
3,775
0
15 Aug 2017
On Calibration of Modern Neural Networks
Chuan Guo
Geoff Pleiss
Yu Sun
Kilian Q. Weinberger
UQCV
299
5,877
0
14 Jun 2017
Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour
Priya Goyal
Piotr Dollár
Ross B. Girshick
P. Noordhuis
Lukasz Wesolowski
Aapo Kyrola
Andrew Tulloch
Yangqing Jia
Kaiming He
3DH
128
3,688
0
08 Jun 2017
SGDR: Stochastic Gradient Descent with Warm Restarts
I. Loshchilov
Frank Hutter
ODL
352
8,190
0
13 Aug 2016
Gradual DropIn of Layers to Train Very Deep Neural Networks
L. Smith
Emily M. Hand
T. Doster
AI4CE
82
33
0
22 Nov 2015
Net2Net: Accelerating Learning via Knowledge Transfer
Tianqi Chen
Ian Goodfellow
Jonathon Shlens
187
672
0
18 Nov 2015
Training Very Deep Networks
R. Srivastava
Klaus Greff
Jürgen Schmidhuber
165
1,687
0
22 Jul 2015
Cyclical Learning Rates for Training Neural Networks
L. Smith
ODL
240
2,541
0
03 Jun 2015
Distilling the Knowledge in a Neural Network
Geoffrey E. Hinton
Oriol Vinyals
J. Dean
FedML
367
19,745
0
09 Mar 2015
FitNets: Hints for Thin Deep Nets
Adriana Romero
Nicolas Ballas
Samira Ebrahimi Kahou
Antoine Chassang
C. Gatta
Yoshua Bengio
FedML
330
3,906
0
19 Dec 2014
1