ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.07800
  4. Cited By
Not All Patches are What You Need: Expediting Vision Transformers via
  Token Reorganizations

Not All Patches are What You Need: Expediting Vision Transformers via Token Reorganizations

16 February 2022
Youwei Liang
Chongjian Ge
Zhan Tong
Yibing Song
Jue Wang
P. Xie
    ViT
ArXivPDFHTML

Papers citing "Not All Patches are What You Need: Expediting Vision Transformers via Token Reorganizations"

7 / 57 papers shown
Title
Pruning Self-attentions into Convolutional Layers in Single Path
Pruning Self-attentions into Convolutional Layers in Single Path
Haoyu He
Jianfei Cai
Jing Liu
Zizheng Pan
Jing Zhang
Dacheng Tao
Bohan Zhuang
ViT
34
40
0
23 Nov 2021
Intriguing Properties of Vision Transformers
Intriguing Properties of Vision Transformers
Muzammal Naseer
Kanchana Ranasinghe
Salman Khan
Munawar Hayat
F. Khan
Ming-Hsuan Yang
ViT
259
621
0
21 May 2021
Emerging Properties in Self-Supervised Vision Transformers
Emerging Properties in Self-Supervised Vision Transformers
Mathilde Caron
Hugo Touvron
Ishan Misra
Hervé Jégou
Julien Mairal
Piotr Bojanowski
Armand Joulin
317
5,785
0
29 Apr 2021
Visformer: The Vision-friendly Transformer
Visformer: The Vision-friendly Transformer
Zhengsu Chen
Lingxi Xie
Jianwei Niu
Xuefeng Liu
Longhui Wei
Qi Tian
ViT
120
209
0
26 Apr 2021
Transformer in Transformer
Transformer in Transformer
Kai Han
An Xiao
Enhua Wu
Jianyuan Guo
Chunjing Xu
Yunhe Wang
ViT
287
1,524
0
27 Feb 2021
Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction
  without Convolutions
Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions
Wenhai Wang
Enze Xie
Xiang Li
Deng-Ping Fan
Kaitao Song
Ding Liang
Tong Lu
Ping Luo
Ling Shao
ViT
280
3,623
0
24 Feb 2021
Is Space-Time Attention All You Need for Video Understanding?
Is Space-Time Attention All You Need for Video Understanding?
Gedas Bertasius
Heng Wang
Lorenzo Torresani
ViT
280
1,982
0
09 Feb 2021
Previous
12