Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2202.07562
Cited By
Improving the repeatability of deep learning models with Monte Carlo dropout
15 February 2022
A. Lemay
K. Hoebel
Christopher P. Bridge
B. Befano
Silvia De Sanjosé
Diden Egemen
A. Rodriguez
M. Schiffman
John Peter Campbell
Jayashree Kalpathy-Cramer
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Improving the repeatability of deep learning models with Monte Carlo dropout"
5 / 5 papers shown
Title
Improving the Reproducibility of Deep Learning Software: An Initial Investigation through a Case Study Analysis
Nikita Ravi
Abhinav Goel
James C. Davis
George K. Thiruvathukal
51
0
0
06 May 2025
Data-Driven Prediction and Uncertainty Quantification of PWR Crud-Induced Power Shift Using Convolutional Neural Networks
Aidan Furlong
Farah Alsafadi
S. Palmtag
Andrew Godfrey
Xu Wu
57
1
0
27 Jun 2024
SkiNet: A Deep Learning Solution for Skin Lesion Diagnosis with Uncertainty Estimation and Explainability
R. Singh
R. Gorantla
Sai Giridhar Allada
N. Pratap
19
3
0
30 Dec 2020
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,145
0
06 Jun 2015
Improving neural networks by preventing co-adaptation of feature detectors
Geoffrey E. Hinton
Nitish Srivastava
A. Krizhevsky
Ilya Sutskever
Ruslan Salakhutdinov
VLM
266
7,638
0
03 Jul 2012
1