ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.06510
  4. Cited By
Mixing and Shifting: Exploiting Global and Local Dependencies in Vision
  MLPs

Mixing and Shifting: Exploiting Global and Local Dependencies in Vision MLPs

14 February 2022
Huangjie Zheng
Pengcheng He
Weizhu Chen
Mingyuan Zhou
ArXivPDFHTML

Papers citing "Mixing and Shifting: Exploiting Global and Local Dependencies in Vision MLPs"

42 / 42 papers shown
Title
A ConvNet for the 2020s
A ConvNet for the 2020s
Zhuang Liu
Hanzi Mao
Chaozheng Wu
Christoph Feichtenhofer
Trevor Darrell
Saining Xie
ViT
54
5,073
0
10 Jan 2022
An Image Patch is a Wave: Phase-Aware Vision MLP
An Image Patch is a Wave: Phase-Aware Vision MLP
Yehui Tang
Kai Han
Jianyuan Guo
Chang Xu
Yanxi Li
Chao Xu
Yunhe Wang
40
135
0
24 Nov 2021
Sparse MLP for Image Recognition: Is Self-Attention Really Necessary?
Sparse MLP for Image Recognition: Is Self-Attention Really Necessary?
Chuanxin Tang
Yucheng Zhao
Guangting Wang
Chong Luo
Wenxuan Xie
Wenjun Zeng
MoE
ViT
43
98
0
12 Sep 2021
ConvMLP: Hierarchical Convolutional MLPs for Vision
ConvMLP: Hierarchical Convolutional MLPs for Vision
Jiachen Li
Ali Hassani
Steven Walton
Humphrey Shi
61
67
0
09 Sep 2021
Hire-MLP: Vision MLP via Hierarchical Rearrangement
Hire-MLP: Vision MLP via Hierarchical Rearrangement
Jianyuan Guo
Yehui Tang
Kai Han
Xinghao Chen
Han Wu
Chao Xu
Chang Xu
Yunhe Wang
67
105
0
30 Aug 2021
Rethinking and Improving Relative Position Encoding for Vision
  Transformer
Rethinking and Improving Relative Position Encoding for Vision Transformer
Kan Wu
Houwen Peng
Minghao Chen
Jianlong Fu
Hongyang Chao
ViT
66
333
0
29 Jul 2021
CycleMLP: A MLP-like Architecture for Dense Prediction
CycleMLP: A MLP-like Architecture for Dense Prediction
Shoufa Chen
Enze Xie
Chongjian Ge
Runjian Chen
Ding Liang
Ping Luo
115
231
0
21 Jul 2021
AS-MLP: An Axial Shifted MLP Architecture for Vision
AS-MLP: An Axial Shifted MLP Architecture for Vision
Dongze Lian
Zehao Yu
Xing Sun
Shenghua Gao
104
189
0
18 Jul 2021
GLiT: Neural Architecture Search for Global and Local Image Transformer
GLiT: Neural Architecture Search for Global and Local Image Transformer
Boyu Chen
Peixia Li
Chuming Li
Baopu Li
Lei Bai
Chen Lin
Ming Sun
Junjie Yan
Wanli Ouyang
ViT
58
85
0
07 Jul 2021
Global Filter Networks for Image Classification
Global Filter Networks for Image Classification
Yongming Rao
Wenliang Zhao
Zheng Zhu
Jiwen Lu
Jie Zhou
ViT
39
458
0
01 Jul 2021
Vision Permutator: A Permutable MLP-Like Architecture for Visual
  Recognition
Vision Permutator: A Permutable MLP-Like Architecture for Visual Recognition
Qibin Hou
Zihang Jiang
Li-xin Yuan
Mingg-Ming Cheng
Shuicheng Yan
Jiashi Feng
ViT
MLLM
90
206
0
23 Jun 2021
S$^2$-MLP: Spatial-Shift MLP Architecture for Vision
S2^22-MLP: Spatial-Shift MLP Architecture for Vision
Tan Yu
Xu Li
Yunfeng Cai
Mingming Sun
Ping Li
53
187
0
14 Jun 2021
Pay Attention to MLPs
Pay Attention to MLPs
Hanxiao Liu
Zihang Dai
David R. So
Quoc V. Le
AI4CE
77
657
0
17 May 2021
ResMLP: Feedforward networks for image classification with
  data-efficient training
ResMLP: Feedforward networks for image classification with data-efficient training
Hugo Touvron
Piotr Bojanowski
Mathilde Caron
Matthieu Cord
Alaaeldin El-Nouby
...
Gautier Izacard
Armand Joulin
Gabriel Synnaeve
Jakob Verbeek
Hervé Jégou
VLM
52
657
0
07 May 2021
Do You Even Need Attention? A Stack of Feed-Forward Layers Does
  Surprisingly Well on ImageNet
Do You Even Need Attention? A Stack of Feed-Forward Layers Does Surprisingly Well on ImageNet
Luke Melas-Kyriazi
ViT
18
102
0
06 May 2021
MLP-Mixer: An all-MLP Architecture for Vision
MLP-Mixer: An all-MLP Architecture for Vision
Ilya O. Tolstikhin
N. Houlsby
Alexander Kolesnikov
Lucas Beyer
Xiaohua Zhai
...
Andreas Steiner
Daniel Keysers
Jakob Uszkoreit
Mario Lucic
Alexey Dosovitskiy
371
2,638
0
04 May 2021
CvT: Introducing Convolutions to Vision Transformers
CvT: Introducing Convolutions to Vision Transformers
Haiping Wu
Bin Xiao
Noel Codella
Mengchen Liu
Xiyang Dai
Lu Yuan
Lei Zhang
ViT
105
1,891
0
29 Mar 2021
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
Ze Liu
Yutong Lin
Yue Cao
Han Hu
Yixuan Wei
Zheng Zhang
Stephen Lin
B. Guo
ViT
208
21,051
0
25 Mar 2021
Transformer in Transformer
Transformer in Transformer
Kai Han
An Xiao
Enhua Wu
Jianyuan Guo
Chunjing Xu
Yunhe Wang
ViT
354
1,544
0
27 Feb 2021
Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction
  without Convolutions
Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions
Wenhai Wang
Enze Xie
Xiang Li
Deng-Ping Fan
Kaitao Song
Ding Liang
Tong Lu
Ping Luo
Ling Shao
ViT
404
3,660
0
24 Feb 2021
Tokens-to-Token ViT: Training Vision Transformers from Scratch on
  ImageNet
Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet
Li-xin Yuan
Yunpeng Chen
Tao Wang
Weihao Yu
Yujun Shi
Zihang Jiang
Francis E. H. Tay
Jiashi Feng
Shuicheng Yan
ViT
80
1,918
0
28 Jan 2021
Training data-efficient image transformers & distillation through
  attention
Training data-efficient image transformers & distillation through attention
Hugo Touvron
Matthieu Cord
Matthijs Douze
Francisco Massa
Alexandre Sablayrolles
Hervé Jégou
ViT
228
6,657
0
23 Dec 2020
An Image is Worth 16x16 Words: Transformers for Image Recognition at
  Scale
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
Alexey Dosovitskiy
Lucas Beyer
Alexander Kolesnikov
Dirk Weissenborn
Xiaohua Zhai
...
Matthias Minderer
G. Heigold
Sylvain Gelly
Jakob Uszkoreit
N. Houlsby
ViT
161
40,217
0
22 Oct 2020
Designing Network Design Spaces
Designing Network Design Spaces
Ilija Radosavovic
Raj Prateek Kosaraju
Ross B. Girshick
Kaiming He
Piotr Dollár
GNN
68
1,672
0
30 Mar 2020
RandAugment: Practical automated data augmentation with a reduced search
  space
RandAugment: Practical automated data augmentation with a reduced search space
E. D. Cubuk
Barret Zoph
Jonathon Shlens
Quoc V. Le
MQ
169
3,458
0
30 Sep 2019
MMDetection: Open MMLab Detection Toolbox and Benchmark
MMDetection: Open MMLab Detection Toolbox and Benchmark
Kai-xiang Chen
Jiaqi Wang
Jiangmiao Pang
Yuhang Cao
Yu Xiong
...
Jingdong Wang
Jianping Shi
Wanli Ouyang
Chen Change Loy
Dahua Lin
VOS
78
2,845
0
17 Jun 2019
CutMix: Regularization Strategy to Train Strong Classifiers with
  Localizable Features
CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features
Sangdoo Yun
Dongyoon Han
Seong Joon Oh
Sanghyuk Chun
Junsuk Choe
Y. Yoo
OOD
553
4,735
0
13 May 2019
Unified Perceptual Parsing for Scene Understanding
Unified Perceptual Parsing for Scene Understanding
Tete Xiao
Yingcheng Liu
Bolei Zhou
Yuning Jiang
Jian Sun
OCL
VOS
79
1,859
0
26 Jul 2018
Cascade R-CNN: Delving into High Quality Object Detection
Cascade R-CNN: Delving into High Quality Object Detection
Zhaowei Cai
Nuno Vasconcelos
ObjD
94
4,885
0
03 Dec 2017
mixup: Beyond Empirical Risk Minimization
mixup: Beyond Empirical Risk Minimization
Hongyi Zhang
Moustapha Cissé
Yann N. Dauphin
David Lopez-Paz
NoLa
212
9,687
0
25 Oct 2017
Random Erasing Data Augmentation
Random Erasing Data Augmentation
Zhun Zhong
Liang Zheng
Guoliang Kang
Shaozi Li
Yi Yang
63
3,614
0
16 Aug 2017
Attention Is All You Need
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
309
129,831
0
12 Jun 2017
Mask R-CNN
Mask R-CNN
Kaiming He
Georgia Gkioxari
Piotr Dollár
Ross B. Girshick
ObjD
232
27,018
0
20 Mar 2017
Semantic Understanding of Scenes through the ADE20K Dataset
Semantic Understanding of Scenes through the ADE20K Dataset
Bolei Zhou
Hang Zhao
Xavier Puig
Tete Xiao
Sanja Fidler
Adela Barriuso
Antonio Torralba
SSeg
309
1,850
0
18 Aug 2016
Layer Normalization
Layer Normalization
Jimmy Lei Ba
J. Kiros
Geoffrey E. Hinton
194
10,412
0
21 Jul 2016
Deep Networks with Stochastic Depth
Deep Networks with Stochastic Depth
Gao Huang
Yu Sun
Zhuang Liu
Daniel Sedra
Kilian Q. Weinberger
119
2,344
0
30 Mar 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.1K
192,638
0
10 Dec 2015
Rethinking the Inception Architecture for Computer Vision
Rethinking the Inception Architecture for Computer Vision
Christian Szegedy
Vincent Vanhoucke
Sergey Ioffe
Jonathon Shlens
Z. Wojna
3DV
BDL
373
27,231
0
02 Dec 2015
Batch Normalization: Accelerating Deep Network Training by Reducing
  Internal Covariate Shift
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Sergey Ioffe
Christian Szegedy
OOD
219
43,154
0
11 Feb 2015
Going Deeper with Convolutions
Going Deeper with Convolutions
Christian Szegedy
Wei Liu
Yangqing Jia
P. Sermanet
Scott E. Reed
Dragomir Anguelov
D. Erhan
Vincent Vanhoucke
Andrew Rabinovich
235
43,511
0
17 Sep 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
683
99,991
0
04 Sep 2014
Microsoft COCO: Common Objects in Context
Microsoft COCO: Common Objects in Context
Nayeon Lee
Michael Maire
Serge J. Belongie
Lubomir Bourdev
Ross B. Girshick
James Hays
Pietro Perona
Deva Ramanan
C. L. Zitnick
Piotr Dollár
ObjD
158
43,290
0
01 May 2014
1