ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.05780
  4. Cited By
A Modern Self-Referential Weight Matrix That Learns to Modify Itself
v1v2 (latest)

A Modern Self-Referential Weight Matrix That Learns to Modify Itself

11 February 2022
Kazuki Irie
Imanol Schlag
Róbert Csordás
Jürgen Schmidhuber
ArXiv (abs)PDFHTML

Papers citing "A Modern Self-Referential Weight Matrix That Learns to Modify Itself"

37 / 37 papers shown
Title
The CLEAR Benchmark: Continual LEArning on Real-World Imagery
The CLEAR Benchmark: Continual LEArning on Real-World Imagery
Zhiqiu Lin
Jia Shi
Deepak Pathak
Deva Ramanan
CLLVLM
192
93
0
17 Jan 2022
HyperTransformer: Model Generation for Supervised and Semi-Supervised
  Few-Shot Learning
HyperTransformer: Model Generation for Supervised and Semi-Supervised Few-Shot Learning
A. Zhmoginov
Mark Sandler
Max Vladymyrov
ViT
70
69
0
11 Jan 2022
The Neural Data Router: Adaptive Control Flow in Transformers Improves
  Systematic Generalization
The Neural Data Router: Adaptive Control Flow in Transformers Improves Systematic Generalization
Róbert Csordás
Kazuki Irie
Jürgen Schmidhuber
AI4CE
86
57
0
14 Oct 2021
Going Beyond Linear Transformers with Recurrent Fast Weight Programmers
Going Beyond Linear Transformers with Recurrent Fast Weight Programmers
Kazuki Irie
Imanol Schlag
Róbert Csordás
Jürgen Schmidhuber
82
62
0
11 Jun 2021
MLP-Mixer: An all-MLP Architecture for Vision
MLP-Mixer: An all-MLP Architecture for Vision
Ilya O. Tolstikhin
N. Houlsby
Alexander Kolesnikov
Lucas Beyer
Xiaohua Zhai
...
Andreas Steiner
Daniel Keysers
Jakob Uszkoreit
Mario Lucic
Alexey Dosovitskiy
434
2,685
0
04 May 2021
Meta-Learning Bidirectional Update Rules
Meta-Learning Bidirectional Update Rules
Mark Sandler
Max Vladymyrov
A. Zhmoginov
Nolan Miller
Andrew Jackson
T. Madams
Blaise Agüera y Arcas
76
15
0
10 Apr 2021
Random Feature Attention
Random Feature Attention
Hao Peng
Nikolaos Pappas
Dani Yogatama
Roy Schwartz
Noah A. Smith
Lingpeng Kong
109
362
0
03 Mar 2021
Linear Transformers Are Secretly Fast Weight Programmers
Linear Transformers Are Secretly Fast Weight Programmers
Imanol Schlag
Kazuki Irie
Jürgen Schmidhuber
124
252
0
22 Feb 2021
Meta Learning Backpropagation And Improving It
Meta Learning Backpropagation And Improving It
Louis Kirsch
Jürgen Schmidhuber
102
57
0
29 Dec 2020
Rethinking Attention with Performers
Rethinking Attention with Performers
K. Choromanski
Valerii Likhosherstov
David Dohan
Xingyou Song
Andreea Gane
...
Afroz Mohiuddin
Lukasz Kaiser
David Belanger
Lucy J. Colwell
Adrian Weller
186
1,600
0
30 Sep 2020
Meta-Learning through Hebbian Plasticity in Random Networks
Meta-Learning through Hebbian Plasticity in Random Networks
Elias Najarro
S. Risi
93
78
0
06 Jul 2020
Transformers are RNNs: Fast Autoregressive Transformers with Linear
  Attention
Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention
Angelos Katharopoulos
Apoorv Vyas
Nikolaos Pappas
Franccois Fleuret
201
1,786
0
29 Jun 2020
Adaptive Reinforcement Learning through Evolving Self-Modifying Neural
  Networks
Adaptive Reinforcement Learning through Evolving Self-Modifying Neural Networks
Samuel Schmidgall
KELMCLL
20
7
0
22 May 2020
Addressing Catastrophic Forgetting in Few-Shot Problems
Addressing Catastrophic Forgetting in Few-Shot Problems
Pauching Yap
H. Ritter
David Barber
CLLBDL
60
19
0
30 Apr 2020
Meta-Baseline: Exploring Simple Meta-Learning for Few-Shot Learning
Meta-Baseline: Exploring Simple Meta-Learning for Few-Shot Learning
Yinbo Chen
Zhuang Liu
Huijuan Xu
Trevor Darrell
Xiaolong Wang
205
347
0
09 Mar 2020
Backpropamine: training self-modifying neural networks with
  differentiable neuromodulated plasticity
Backpropamine: training self-modifying neural networks with differentiable neuromodulated plasticity
Thomas Miconi
Aditya Rawal
Jeff Clune
Kenneth O. Stanley
74
90
0
24 Feb 2020
Leveraging Procedural Generation to Benchmark Reinforcement Learning
Leveraging Procedural Generation to Benchmark Reinforcement Learning
K. Cobbe
Christopher Hesse
Jacob Hilton
John Schulman
81
557
0
03 Dec 2019
TorchBeast: A PyTorch Platform for Distributed RL
TorchBeast: A PyTorch Platform for Distributed RL
Heinrich Küttler
Nantas Nardelli
Thibaut Lavril
Marco Selvatici
V. Sivakumar
Tim Rocktaschel
Edward Grefenstette
OffRL
65
58
0
08 Oct 2019
Torchmeta: A Meta-Learning library for PyTorch
Torchmeta: A Meta-Learning library for PyTorch
T. Deleu
Tobias Würfl
Mandana Samiei
Joseph Paul Cohen
Yoshua Bengio
OffRL
74
85
0
14 Sep 2019
Metalearned Neural Memory
Metalearned Neural Memory
Tsendsuren Munkhdalai
Alessandro Sordoni
Tong Wang
Adam Trischler
KELM
51
62
0
23 Jul 2019
Risks from Learned Optimization in Advanced Machine Learning Systems
Risks from Learned Optimization in Advanced Machine Learning Systems
Evan Hubinger
Chris van Merwijk
Vladimir Mikulik
Joar Skalse
Scott Garrabrant
89
154
0
05 Jun 2019
Metalearning with Hebbian Fast Weights
Metalearning with Hebbian Fast Weights
Tsendsuren Munkhdalai
Adam Trischler
VLMFedML
60
37
0
12 Jul 2018
TADAM: Task dependent adaptive metric for improved few-shot learning
TADAM: Task dependent adaptive metric for improved few-shot learning
Boris N. Oreshkin
Pau Rodríguez López
Alexandre Lacoste
96
1,313
0
23 May 2018
Differentiable plasticity: training plastic neural networks with
  backpropagation
Differentiable plasticity: training plastic neural networks with backpropagation
Thomas Miconi
Jeff Clune
Kenneth O. Stanley
AI4CE
64
154
0
06 Apr 2018
IMPALA: Scalable Distributed Deep-RL with Importance Weighted
  Actor-Learner Architectures
IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures
L. Espeholt
Hubert Soyer
Rémi Munos
Karen Simonyan
Volodymyr Mnih
...
Vlad Firoiu
Tim Harley
Iain Dunning
Shane Legg
Koray Kavukcuoglu
237
1,605
0
05 Feb 2018
Meta-Learning and Universality: Deep Representations and Gradient
  Descent can Approximate any Learning Algorithm
Meta-Learning and Universality: Deep Representations and Gradient Descent can Approximate any Learning Algorithm
Chelsea Finn
Sergey Levine
SSL
96
223
0
31 Oct 2017
Dynamic Evaluation of Neural Sequence Models
Dynamic Evaluation of Neural Sequence Models
Ben Krause
Emmanuel Kahembwe
Iain Murray
Steve Renals
73
135
0
21 Sep 2017
Attention Is All You Need
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
786
132,363
0
12 Jun 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
829
11,943
0
09 Mar 2017
Meta Networks
Meta Networks
Tsendsuren Munkhdalai
Hong-ye Yu
GNNAI4CE
101
1,068
0
02 Mar 2017
Learning to reinforcement learn
Learning to reinforcement learn
Jane X. Wang
Z. Kurth-Nelson
Dhruva Tirumala
Hubert Soyer
Joel Z Leibo
Rémi Munos
Charles Blundell
D. Kumaran
M. Botvinick
OffRL
97
983
0
17 Nov 2016
RL$^2$: Fast Reinforcement Learning via Slow Reinforcement Learning
RL2^22: Fast Reinforcement Learning via Slow Reinforcement Learning
Yan Duan
John Schulman
Xi Chen
Peter L. Bartlett
Ilya Sutskever
Pieter Abbeel
OffRL
102
1,028
0
09 Nov 2016
Using Fast Weights to Attend to the Recent Past
Using Fast Weights to Attend to the Recent Past
Jimmy Ba
Geoffrey E. Hinton
Volodymyr Mnih
Joel Z Leibo
Catalin Ionescu
70
273
0
20 Oct 2016
Matching Networks for One Shot Learning
Matching Networks for One Shot Learning
Oriol Vinyals
Charles Blundell
Timothy Lillicrap
Koray Kavukcuoglu
Daan Wierstra
VLM
375
7,333
0
13 Jun 2016
Increasing the Action Gap: New Operators for Reinforcement Learning
Increasing the Action Gap: New Operators for Reinforcement Learning
Marc G. Bellemare
Georg Ostrovski
A. Guez
Philip S. Thomas
Rémi Munos
74
157
0
15 Dec 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.0K
150,312
0
22 Dec 2014
Efficient Object Localization Using Convolutional Networks
Efficient Object Localization Using Convolutional Networks
Jonathan Tompson
Ross Goroshin
Arjun Jain
Yann LeCun
C. Bregler
3DH
184
1,352
0
16 Nov 2014
1