Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2202.05302
Cited By
Trust in AI: Interpretability is not necessary or sufficient, while black-box interaction is necessary and sufficient
10 February 2022
Max W. Shen
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Trust in AI: Interpretability is not necessary or sufficient, while black-box interaction is necessary and sufficient"
13 / 13 papers shown
Title
Avoiding Leakage Poisoning: Concept Interventions Under Distribution Shifts
M. Zarlenga
Gabriele Dominici
Pietro Barbiero
Z. Shams
M. Jamnik
KELM
488
0
0
24 Apr 2025
Applications of Generative AI (GAI) for Mobile and Wireless Networking: A Survey
Thai-Hoc Vu
Senthil Kumar Jagatheesaperumal
Minh-Duong Nguyen
Nguyen Van Huynh
Sunghwan Kim
Quoc-Viet Pham
94
13
0
30 May 2024
Understanding Inter-Concept Relationships in Concept-Based Models
Naveen Raman
M. Zarlenga
M. Jamnik
95
5
0
28 May 2024
On the Relationship Between Interpretability and Explainability in Machine Learning
Benjamin Leblanc
Pascal Germain
FaML
120
0
0
20 Nov 2023
A Framework for Interpretability in Machine Learning for Medical Imaging
Alan Q. Wang
Batuhan K. Karaman
Heejong Kim
Jacob Rosenthal
Rachit Saluja
Sean I. Young
M. Sabuncu
AI4CE
134
13
0
02 Oct 2023
SHARCS: Shared Concept Space for Explainable Multimodal Learning
Gabriele Dominici
Pietro Barbiero
Lucie Charlotte Magister
Pietro Lio
Nikola Simidjievski
82
6
0
01 Jul 2023
Interpretable Neural-Symbolic Concept Reasoning
Pietro Barbiero
Gabriele Ciravegna
Francesco Giannini
M. Zarlenga
Lucie Charlotte Magister
Alberto Tonda
Pietro Lio
F. Precioso
M. Jamnik
G. Marra
NAI
LRM
145
41
0
27 Apr 2023
Combining Stochastic Explainers and Subgraph Neural Networks can Increase Expressivity and Interpretability
Indro Spinelli
Michele Guerra
F. Bianchi
Simone Scardapane
76
0
0
14 Apr 2023
A.I. Robustness: a Human-Centered Perspective on Technological Challenges and Opportunities
Andrea Tocchetti
Lorenzo Corti
Agathe Balayn
Mireia Yurrita
Philip Lippmann
Marco Brambilla
Jie Yang
87
14
0
17 Oct 2022
Requirements Engineering for Machine Learning: A Review and Reflection
Zhong Pei
Lin Liu
Chen Wang
Jianmin Wang
VLM
78
24
0
03 Oct 2022
Concept Embedding Models: Beyond the Accuracy-Explainability Trade-Off
M. Zarlenga
Pietro Barbiero
Gabriele Ciravegna
G. Marra
Francesco Giannini
...
F. Precioso
S. Melacci
Adrian Weller
Pietro Lio
M. Jamnik
146
59
0
19 Sep 2022
Encoding Concepts in Graph Neural Networks
Lucie Charlotte Magister
Pietro Barbiero
Dmitry Kazhdan
F. Siciliano
Gabriele Ciravegna
Fabrizio Silvestri
M. Jamnik
Pietro Lio
84
21
0
27 Jul 2022
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
1.3K
17,225
0
16 Feb 2016
1