Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2202.05214
Cited By
Towards a Theory of Non-Log-Concave Sampling: First-Order Stationarity Guarantees for Langevin Monte Carlo
10 February 2022
Krishnakumar Balasubramanian
Sinho Chewi
Murat A. Erdogdu
Adil Salim
Matthew Shunshi Zhang
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Towards a Theory of Non-Log-Concave Sampling: First-Order Stationarity Guarantees for Langevin Monte Carlo"
21 / 21 papers shown
Title
Mixing Time of the Proximal Sampler in Relative Fisher Information via Strong Data Processing Inequality
Andre Wibisono
128
1
0
01 Jul 2025
Noise Conditional Variational Score Distillation
Xinyu Peng
Ziyang Zheng
Yaoming Wang
Han Li
Nuowen Kan
Wenrui Dai
Chenglin Li
Junni Zou
Hongkai Xiong
DiffM
106
0
0
11 Jun 2025
Split Gibbs Discrete Diffusion Posterior Sampling
Wenda Chu
Zihui Wu
Yifan Chen
Yang Song
Yisong Yue
84
2
0
03 Mar 2025
On the query complexity of sampling from non-log-concave distributions
Yuchen He
Chihao Zhang
114
1
0
10 Feb 2025
Non-geodesically-convex optimization in the Wasserstein space
Hoang Phuc Hau Luu
Hanlin Yu
Bernardo Williams
Petrus Mikkola
Marcelo Hartmann
Kai Puolamaki
Arto Klami
134
2
0
08 Jan 2025
Zeroth-Order Sampling Methods for Non-Log-Concave Distributions: Alleviating Metastability by Denoising Diffusion
Ye He
Kevin Rojas
Molei Tao
DiffM
122
11
0
27 Feb 2024
Provably Fast Finite Particle Variants of SVGD via Virtual Particle Stochastic Approximation
Aniket Das
Dheeraj M. Nagaraj
99
8
0
27 May 2023
Learning Rate Free Sampling in Constrained Domains
Louis Sharrock
Lester W. Mackey
Christopher Nemeth
78
2
0
24 May 2023
Subsampling Error in Stochastic Gradient Langevin Diffusions
Kexin Jin
Chenguang Liu
J. Latz
70
0
0
23 May 2023
Forward-backward Gaussian variational inference via JKO in the Bures-Wasserstein Space
Michael Diao
Krishnakumar Balasubramanian
Sinho Chewi
Adil Salim
BDL
68
29
0
10 Apr 2023
Regularized Stein Variational Gradient Flow
Ye He
Krishnakumar Balasubramanian
Bharath K. Sriperumbudur
Jianfeng Lu
OT
65
12
0
15 Nov 2022
Sampling with Mollified Interaction Energy Descent
Lingxiao Li
Qiang Liu
Anna Korba
Mikhail Yurochkin
Justin Solomon
77
17
0
24 Oct 2022
Resolving the Mixing Time of the Langevin Algorithm to its Stationary Distribution for Log-Concave Sampling
Jason M. Altschuler
Kunal Talwar
107
25
0
16 Oct 2022
Fisher information lower bounds for sampling
Sinho Chewi
P. Gerber
Holden Lee
Chen Lu
115
15
0
05 Oct 2022
How good is your Laplace approximation of the Bayesian posterior? Finite-sample computable error bounds for a variety of useful divergences
Mikolaj Kasprzak
Ryan Giordano
Tamara Broderick
70
0
0
29 Sep 2022
Convergence of Stein Variational Gradient Descent under a Weaker Smoothness Condition
Lukang Sun
Avetik G. Karagulyan
Peter Richtárik
90
19
0
01 Jun 2022
Constrained Langevin Algorithms with L-mixing External Random Variables
Yu Zheng
Andrew G. Lamperski
83
6
0
27 May 2022
Improved Convergence Rate of Stochastic Gradient Langevin Dynamics with Variance Reduction and its Application to Optimization
Yuri Kinoshita
Taiji Suzuki
87
17
0
30 Mar 2022
A Proximal Algorithm for Sampling
Jiaming Liang
Yongxin Chen
104
18
0
28 Feb 2022
A Convergence Theory for SVGD in the Population Limit under Talagrand's Inequality T1
Adil Salim
Lukang Sun
Peter Richtárik
74
20
0
06 Jun 2021
Nonasymptotic analysis of Stochastic Gradient Hamiltonian Monte Carlo under local conditions for nonconvex optimization
Ömer Deniz Akyildiz
Sotirios Sabanis
99
17
0
13 Feb 2020
1