ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.05214
  4. Cited By
Towards a Theory of Non-Log-Concave Sampling: First-Order Stationarity
  Guarantees for Langevin Monte Carlo

Towards a Theory of Non-Log-Concave Sampling: First-Order Stationarity Guarantees for Langevin Monte Carlo

10 February 2022
Krishnakumar Balasubramanian
Sinho Chewi
Murat A. Erdogdu
Adil Salim
Matthew Shunshi Zhang
ArXiv (abs)PDFHTML

Papers citing "Towards a Theory of Non-Log-Concave Sampling: First-Order Stationarity Guarantees for Langevin Monte Carlo"

21 / 21 papers shown
Title
Mixing Time of the Proximal Sampler in Relative Fisher Information via Strong Data Processing Inequality
Mixing Time of the Proximal Sampler in Relative Fisher Information via Strong Data Processing Inequality
Andre Wibisono
128
1
0
01 Jul 2025
Noise Conditional Variational Score Distillation
Xinyu Peng
Ziyang Zheng
Yaoming Wang
Han Li
Nuowen Kan
Wenrui Dai
Chenglin Li
Junni Zou
Hongkai Xiong
DiffM
106
0
0
11 Jun 2025
Split Gibbs Discrete Diffusion Posterior Sampling
Split Gibbs Discrete Diffusion Posterior Sampling
Wenda Chu
Zihui Wu
Yifan Chen
Yang Song
Yisong Yue
84
2
0
03 Mar 2025
On the query complexity of sampling from non-log-concave distributions
On the query complexity of sampling from non-log-concave distributions
Yuchen He
Chihao Zhang
114
1
0
10 Feb 2025
Non-geodesically-convex optimization in the Wasserstein space
Non-geodesically-convex optimization in the Wasserstein space
Hoang Phuc Hau Luu
Hanlin Yu
Bernardo Williams
Petrus Mikkola
Marcelo Hartmann
Kai Puolamaki
Arto Klami
134
2
0
08 Jan 2025
Zeroth-Order Sampling Methods for Non-Log-Concave Distributions:
  Alleviating Metastability by Denoising Diffusion
Zeroth-Order Sampling Methods for Non-Log-Concave Distributions: Alleviating Metastability by Denoising Diffusion
Ye He
Kevin Rojas
Molei Tao
DiffM
122
11
0
27 Feb 2024
Provably Fast Finite Particle Variants of SVGD via Virtual Particle
  Stochastic Approximation
Provably Fast Finite Particle Variants of SVGD via Virtual Particle Stochastic Approximation
Aniket Das
Dheeraj M. Nagaraj
99
8
0
27 May 2023
Learning Rate Free Sampling in Constrained Domains
Learning Rate Free Sampling in Constrained Domains
Louis Sharrock
Lester W. Mackey
Christopher Nemeth
78
2
0
24 May 2023
Subsampling Error in Stochastic Gradient Langevin Diffusions
Subsampling Error in Stochastic Gradient Langevin Diffusions
Kexin Jin
Chenguang Liu
J. Latz
70
0
0
23 May 2023
Forward-backward Gaussian variational inference via JKO in the
  Bures-Wasserstein Space
Forward-backward Gaussian variational inference via JKO in the Bures-Wasserstein Space
Michael Diao
Krishnakumar Balasubramanian
Sinho Chewi
Adil Salim
BDL
68
29
0
10 Apr 2023
Regularized Stein Variational Gradient Flow
Regularized Stein Variational Gradient Flow
Ye He
Krishnakumar Balasubramanian
Bharath K. Sriperumbudur
Jianfeng Lu
OT
65
12
0
15 Nov 2022
Sampling with Mollified Interaction Energy Descent
Sampling with Mollified Interaction Energy Descent
Lingxiao Li
Qiang Liu
Anna Korba
Mikhail Yurochkin
Justin Solomon
77
17
0
24 Oct 2022
Resolving the Mixing Time of the Langevin Algorithm to its Stationary
  Distribution for Log-Concave Sampling
Resolving the Mixing Time of the Langevin Algorithm to its Stationary Distribution for Log-Concave Sampling
Jason M. Altschuler
Kunal Talwar
107
25
0
16 Oct 2022
Fisher information lower bounds for sampling
Fisher information lower bounds for sampling
Sinho Chewi
P. Gerber
Holden Lee
Chen Lu
115
15
0
05 Oct 2022
How good is your Laplace approximation of the Bayesian posterior?
  Finite-sample computable error bounds for a variety of useful divergences
How good is your Laplace approximation of the Bayesian posterior? Finite-sample computable error bounds for a variety of useful divergences
Mikolaj Kasprzak
Ryan Giordano
Tamara Broderick
70
0
0
29 Sep 2022
Convergence of Stein Variational Gradient Descent under a Weaker
  Smoothness Condition
Convergence of Stein Variational Gradient Descent under a Weaker Smoothness Condition
Lukang Sun
Avetik G. Karagulyan
Peter Richtárik
90
19
0
01 Jun 2022
Constrained Langevin Algorithms with L-mixing External Random Variables
Constrained Langevin Algorithms with L-mixing External Random Variables
Yu Zheng
Andrew G. Lamperski
83
6
0
27 May 2022
Improved Convergence Rate of Stochastic Gradient Langevin Dynamics with
  Variance Reduction and its Application to Optimization
Improved Convergence Rate of Stochastic Gradient Langevin Dynamics with Variance Reduction and its Application to Optimization
Yuri Kinoshita
Taiji Suzuki
87
17
0
30 Mar 2022
A Proximal Algorithm for Sampling
A Proximal Algorithm for Sampling
Jiaming Liang
Yongxin Chen
104
18
0
28 Feb 2022
A Convergence Theory for SVGD in the Population Limit under Talagrand's
  Inequality T1
A Convergence Theory for SVGD in the Population Limit under Talagrand's Inequality T1
Adil Salim
Lukang Sun
Peter Richtárik
74
20
0
06 Jun 2021
Nonasymptotic analysis of Stochastic Gradient Hamiltonian Monte Carlo
  under local conditions for nonconvex optimization
Nonasymptotic analysis of Stochastic Gradient Hamiltonian Monte Carlo under local conditions for nonconvex optimization
Ömer Deniz Akyildiz
Sotirios Sabanis
99
17
0
13 Feb 2020
1