Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2202.05049
Cited By
Fair When Trained, Unfair When Deployed: Observable Fairness Measures are Unstable in Performative Prediction Settings
10 February 2022
Alan Mishler
Niccolò Dalmasso
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Fair When Trained, Unfair When Deployed: Observable Fairness Measures are Unstable in Performative Prediction Settings"
9 / 9 papers shown
Title
The Flaws of Policies Requiring Human Oversight of Government Algorithms
Ben Green
75
117
0
10 Sep 2021
Testing for concept shift online
V. Vovk
48
22
0
28 Dec 2020
How Do Fair Decisions Fare in Long-term Qualification?
Xueru Zhang
Ruibo Tu
Yang Liu
M. Liu
Hedvig Kjellström
Kun Zhang
Cheng Zhang
85
75
0
21 Oct 2020
Robust Fairness under Covariate Shift
Ashkan Rezaei
Anqi Liu
Omid Memarrast
Brian Ziebart
TTA
OOD
126
86
0
11 Oct 2020
Performative Prediction
Juan C. Perdomo
Tijana Zrnic
Celestine Mendler-Dünner
Moritz Hardt
158
322
0
16 Feb 2020
Fairness Without Demographics in Repeated Loss Minimization
Tatsunori B. Hashimoto
Megha Srivastava
Hongseok Namkoong
Percy Liang
FaML
117
585
0
20 Jun 2018
Delayed Impact of Fair Machine Learning
Lydia T. Liu
Sarah Dean
Esther Rolf
Max Simchowitz
Moritz Hardt
FaML
85
478
0
12 Mar 2018
Runaway Feedback Loops in Predictive Policing
D. Ensign
Sorelle A. Friedler
Scott Neville
C. Scheidegger
Suresh Venkatasubramanian
63
347
0
29 Jun 2017
Equality of Opportunity in Supervised Learning
Moritz Hardt
Eric Price
Nathan Srebro
FaML
236
4,341
0
07 Oct 2016
1