ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.04744
  4. Cited By
Robust Bayesian Inference for Simulator-based Models via the MMD
  Posterior Bootstrap

Robust Bayesian Inference for Simulator-based Models via the MMD Posterior Bootstrap

9 February 2022
Charita Dellaporta
Jeremias Knoblauch
Theodoros Damoulas
F. Briol
ArXivPDFHTML

Papers citing "Robust Bayesian Inference for Simulator-based Models via the MMD Posterior Bootstrap"

32 / 32 papers shown
Title
Decision Making under Model Misspecification: DRO with Robust Bayesian Ambiguity Sets
Decision Making under Model Misspecification: DRO with Robust Bayesian Ambiguity Sets
Charita Dellaporta
Patrick O'Hara
Theodoros Damoulas
38
0
0
06 May 2025
A Dictionary of Closed-Form Kernel Mean Embeddings
A Dictionary of Closed-Form Kernel Mean Embeddings
F. Briol
A. Gessner
Toni Karvonen
Maren Mahsereci
BDL
78
1
0
26 Apr 2025
A Deep Bayesian Nonparametric Framework for Robust Mutual Information Estimation
Forough Fazeliasl
Michael Minyi Zhang
Bei Jiang
Linglong Kong
43
0
0
13 Mar 2025
Robust Simulation-Based Inference under Missing Data via Neural Processes
Yogesh Verma
Ayush Bharti
Vikas K. Garg
68
0
0
03 Mar 2025
Cost-aware Simulation-based Inference
Cost-aware Simulation-based Inference
Ayush Bharti
Daolang Huang
Samuel Kaski
F. Briol
33
1
0
10 Oct 2024
A Comprehensive Guide to Simulation-based Inference in Computational
  Biology
A Comprehensive Guide to Simulation-based Inference in Computational Biology
Xiaoyu Wang
Ryan P. Kelly
A. Jenner
D. Warne
Christopher C. Drovandi
33
3
0
29 Sep 2024
On the Robustness of Kernel Goodness-of-Fit Tests
On the Robustness of Kernel Goodness-of-Fit Tests
Xing Liu
F. Briol
OOD
75
4
0
11 Aug 2024
Detecting Model Misspecification in Amortized Bayesian Inference with
  Neural Networks: An Extended Investigation
Detecting Model Misspecification in Amortized Bayesian Inference with Neural Networks: An Extended Investigation
Marvin Schmitt
Paul-Christian Bürkner
Ullrich Kothe
Stefan T. Radev
37
6
0
05 Jun 2024
Robust Kernel Hypothesis Testing under Data Corruption
Robust Kernel Hypothesis Testing under Data Corruption
Antonin Schrab
Ilmun Kim
48
3
0
30 May 2024
Sourcerer: Sample-based Maximum Entropy Source Distribution Estimation
Sourcerer: Sample-based Maximum Entropy Source Distribution Estimation
Julius Vetter
Guy Moss
Cornelius Schroder
Richard Gao
Jakob H. Macke
37
3
0
12 Feb 2024
Pseudo-Likelihood Inference
Pseudo-Likelihood Inference
Theo Gruner
Boris Belousov
Fabio Muratore
Daniel Palenicek
Jan Peters
26
0
0
28 Nov 2023
Robust and Conjugate Gaussian Process Regression
Robust and Conjugate Gaussian Process Regression
Matias Altamirano
F. Briol
Jeremias Knoblauch
20
10
0
01 Nov 2023
Sensitivity-Aware Amortized Bayesian Inference
Sensitivity-Aware Amortized Bayesian Inference
Lasse Elsemüller
Hans Olischläger
Marvin Schmitt
Paul-Christian Bürkner
Ullrich Kothe
Stefan T. Radev
23
7
0
17 Oct 2023
Learning Robust Statistics for Simulation-based Inference under Model
  Misspecification
Learning Robust Statistics for Simulation-based Inference under Model Misspecification
Daolang Huang
Ayush Bharti
Amauri Souza
Luigi Acerbi
Samuel Kaski
40
30
0
25 May 2023
Generalized Bayesian Inference for Scientific Simulators via Amortized
  Cost Estimation
Generalized Bayesian Inference for Scientific Simulators via Amortized Cost Estimation
Richard Gao
Michael Deistler
Jakob H. Macke
22
11
0
24 May 2023
Adversarial robustness of amortized Bayesian inference
Adversarial robustness of amortized Bayesian inference
Manuel Glöckler
Michael Deistler
Jakob H. Macke
AAML
27
13
0
24 May 2023
Robustifying likelihoods by optimistically re-weighting data
Robustifying likelihoods by optimistically re-weighting data
Miheer Dewaskar
Christopher Tosh
Jeremias Knoblauch
David B. Dunson
16
5
0
19 Mar 2023
A Semi-Bayesian Nonparametric Estimator of the Maximum Mean Discrepancy
  Measure: Applications in Goodness-of-Fit Testing and Generative Adversarial
  Networks
A Semi-Bayesian Nonparametric Estimator of the Maximum Mean Discrepancy Measure: Applications in Goodness-of-Fit Testing and Generative Adversarial Networks
Forough Fazeli Asl
M. Zhang
Lizhen Lin
24
1
0
05 Mar 2023
Robust and Scalable Bayesian Online Changepoint Detection
Robust and Scalable Bayesian Online Changepoint Detection
Matias Altamirano
F. Briol
Jeremias Knoblauch
27
12
0
09 Feb 2023
Misspecification-robust Sequential Neural Likelihood for
  Simulation-based Inference
Misspecification-robust Sequential Neural Likelihood for Simulation-based Inference
Ryan P. Kelly
David J. Nott
David T. Frazier
D. Warne
Christopher C. Drovandi
25
10
0
31 Jan 2023
Optimally-Weighted Estimators of the Maximum Mean Discrepancy for
  Likelihood-Free Inference
Optimally-Weighted Estimators of the Maximum Mean Discrepancy for Likelihood-Free Inference
Ayush Bharti
Masha Naslidnyk
Oscar Key
Samuel Kaski
F. Briol
40
12
0
27 Jan 2023
Minimum Kernel Discrepancy Estimators
Minimum Kernel Discrepancy Estimators
Chris J. Oates
27
10
0
28 Oct 2022
Targeted Separation and Convergence with Kernel Discrepancies
Targeted Separation and Convergence with Kernel Discrepancies
Alessandro Barp
Carl-Johann Simon-Gabriel
Mark Girolami
Lester W. Mackey
48
14
0
26 Sep 2022
Investigating the Impact of Model Misspecification in Neural
  Simulation-based Inference
Investigating the Impact of Model Misspecification in Neural Simulation-based Inference
Patrick W Cannon
Daniel Ward
Sebastian M. Schmon
22
34
0
05 Sep 2022
Towards Reliable Simulation-Based Inference with Balanced Neural Ratio
  Estimation
Towards Reliable Simulation-Based Inference with Balanced Neural Ratio Estimation
Arnaud Delaunoy
Joeri Hermans
François Rozet
Antoine Wehenkel
Gilles Louppe
39
30
0
29 Aug 2022
Generalised Bayesian Inference for Discrete Intractable Likelihood
Generalised Bayesian Inference for Discrete Intractable Likelihood
Takuo Matsubara
Jeremias Knoblauch
F. Briol
Chris J. Oates
25
14
0
16 Jun 2022
Detecting Model Misspecification in Amortized Bayesian Inference with
  Neural Networks
Detecting Model Misspecification in Amortized Bayesian Inference with Neural Networks
Marvin Schmitt
Paul-Christian Bürkner
Ullrich Kothe
Stefan T. Radev
24
34
0
16 Dec 2021
Composite Goodness-of-fit Tests with Kernels
Composite Goodness-of-fit Tests with Kernels
Oscar Key
A. Gretton
F. Briol
T. Fernandez
30
14
0
19 Nov 2021
A Trust Crisis In Simulation-Based Inference? Your Posterior
  Approximations Can Be Unfaithful
A Trust Crisis In Simulation-Based Inference? Your Posterior Approximations Can Be Unfaithful
Joeri Hermans
Arnaud Delaunoy
François Rozet
Antoine Wehenkel
Volodimir Begy
Gilles Louppe
64
38
0
13 Oct 2021
Discrepancy-based Inference for Intractable Generative Models using
  Quasi-Monte Carlo
Discrepancy-based Inference for Intractable Generative Models using Quasi-Monte Carlo
Ziang Niu
J. Meier
F. Briol
24
12
0
22 Jun 2021
MMD-Bayes: Robust Bayesian Estimation via Maximum Mean Discrepancy
MMD-Bayes: Robust Bayesian Estimation via Maximum Mean Discrepancy
Badr-Eddine Chérief-Abdellatif
Pierre Alquier
56
72
0
29 Sep 2019
Pac-Bayesian Supervised Classification: The Thermodynamics of
  Statistical Learning
Pac-Bayesian Supervised Classification: The Thermodynamics of Statistical Learning
O. Catoni
148
454
0
03 Dec 2007
1