ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.04124
  4. Cited By
A Mini-Block Fisher Method for Deep Neural Networks
v1v2v3v4 (latest)

A Mini-Block Fisher Method for Deep Neural Networks

8 February 2022
Achraf Bahamou
Shiqian Ma
Yi Ren
    ODL
ArXiv (abs)PDFHTML

Papers citing "A Mini-Block Fisher Method for Deep Neural Networks"

18 / 18 papers shown
Title
An Efficient Nonlinear Acceleration method that Exploits Symmetry of the
  Hessian
An Efficient Nonlinear Acceleration method that Exploits Symmetry of the Hessian
Huan He
Shifan Zhao
Z. Tang
Joyce C. Ho
Y. Saad
Yuanzhe Xi
86
3
0
22 Oct 2022
Tensor Normal Training for Deep Learning Models
Tensor Normal Training for Deep Learning Models
Yi Ren
Shiqian Ma
96
28
0
05 Jun 2021
Descending through a Crowded Valley - Benchmarking Deep Learning
  Optimizers
Descending through a Crowded Valley - Benchmarking Deep Learning Optimizers
Robin M. Schmidt
Frank Schneider
Philipp Hennig
ODL
134
168
0
03 Jul 2020
ADAHESSIAN: An Adaptive Second Order Optimizer for Machine Learning
ADAHESSIAN: An Adaptive Second Order Optimizer for Machine Learning
Z. Yao
A. Gholami
Sheng Shen
Mustafa Mustafa
Kurt Keutzer
Michael W. Mahoney
ODL
123
287
0
01 Jun 2020
On Empirical Comparisons of Optimizers for Deep Learning
On Empirical Comparisons of Optimizers for Deep Learning
Dami Choi
Christopher J. Shallue
Zachary Nado
Jaehoon Lee
Chris J. Maddison
George E. Dahl
109
259
0
11 Oct 2019
Limitations of the Empirical Fisher Approximation for Natural Gradient
  Descent
Limitations of the Empirical Fisher Approximation for Natural Gradient Descent
Frederik Kunstner
Lukas Balles
Philipp Hennig
96
219
0
29 May 2019
Fast Convergence of Natural Gradient Descent for Overparameterized
  Neural Networks
Fast Convergence of Natural Gradient Descent for Overparameterized Neural Networks
Guodong Zhang
James Martens
Roger C. Grosse
ODL
97
126
0
27 May 2019
Measuring the Effects of Data Parallelism on Neural Network Training
Measuring the Effects of Data Parallelism on Neural Network Training
Christopher J. Shallue
Jaehoon Lee
J. Antognini
J. Mamou
J. Ketterling
Yao Wang
100
409
0
08 Nov 2018
Fisher Information and Natural Gradient Learning of Random Deep Networks
Fisher Information and Natural Gradient Learning of Random Deep Networks
S. Amari
Ryo Karakida
Masafumi Oizumi
68
36
0
22 Aug 2018
Nonlinear Acceleration of CNNs
Nonlinear Acceleration of CNNs
Damien Scieur
Edouard Oyallon
Alexandre d’Aspremont
Francis R. Bach
31
11
0
01 Jun 2018
Shampoo: Preconditioned Stochastic Tensor Optimization
Shampoo: Preconditioned Stochastic Tensor Optimization
Vineet Gupta
Tomer Koren
Y. Singer
ODL
105
226
0
26 Feb 2018
FastGCN: Fast Learning with Graph Convolutional Networks via Importance
  Sampling
FastGCN: Fast Learning with Graph Convolutional Networks via Importance Sampling
Jie Chen
Tengfei Ma
Cao Xiao
GNN
154
1,517
0
30 Jan 2018
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning
  Algorithms
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
285
8,928
0
25 Aug 2017
Practical Gauss-Newton Optimisation for Deep Learning
Practical Gauss-Newton Optimisation for Deep Learning
Aleksandar Botev
H. Ritter
David Barber
ODL
76
232
0
12 Jun 2017
Optimizing Neural Networks with Kronecker-factored Approximate Curvature
Optimizing Neural Networks with Kronecker-factored Approximate Curvature
James Martens
Roger C. Grosse
ODL
113
1,024
0
19 Mar 2015
A Stochastic Quasi-Newton Method for Large-Scale Optimization
A Stochastic Quasi-Newton Method for Large-Scale Optimization
R. Byrd
Samantha Hansen
J. Nocedal
Y. Singer
ODL
119
473
0
27 Jan 2014
Riemannian metrics for neural networks I: feedforward networks
Riemannian metrics for neural networks I: feedforward networks
Yann Ollivier
90
104
0
04 Mar 2013
Krylov Subspace Descent for Deep Learning
Krylov Subspace Descent for Deep Learning
Oriol Vinyals
Daniel Povey
ODL
86
148
0
18 Nov 2011
1