Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2202.04005
Cited By
Improved Convergence Rates for Sparse Approximation Methods in Kernel-Based Learning
8 February 2022
Sattar Vakili
Jonathan Scarlett
Da-shan Shiu
A. Bernacchia
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Improved Convergence Rates for Sparse Approximation Methods in Kernel-Based Learning"
18 / 18 papers shown
Title
Distributionally Robust Active Learning for Gaussian Process Regression
Shion Takeno
Yoshito Okura
Yu Inatsu
Aoyama Tatsuya
Tomonari Tanaka
...
Noriaki Hashimoto
Taro Murayama
Hanju Lee
Shinya Kojima
Ichiro Takeuchi
OOD
GP
43
0
0
24 Feb 2025
Differentially Private Kernelized Contextual Bandits
Nikola Pavlovic
Sudeep Salgia
Qing Zhao
40
1
0
13 Jan 2025
Adaptive Resource Allocation for Virtualized Base Stations in O-RAN with Online Learning
Michail Kalntis
Georgios Iosifidis
Fernando A. Kuipers
39
5
0
31 Dec 2024
Kernel-Based Function Approximation for Average Reward Reinforcement Learning: An Optimist No-Regret Algorithm
Sattar Vakili
Julia Olkhovskaya
33
0
0
30 Oct 2024
A variational Bayes approach to debiased inference for low-dimensional parameters in high-dimensional linear regression
Ismaël Castillo
Alice L'Huillier
Kolyan Ray
Luke Travis
39
0
0
18 Jun 2024
Further Understanding of a Local Gaussian Process Approximation: Characterising Convergence in the Finite Regime
Anthony Stephenson
Robert Allison
Edward O. Pyzer-Knapp
29
0
0
09 Apr 2024
Order-Optimal Regret in Distributed Kernel Bandits using Uniform Sampling with Shared Randomness
Nikola Pavlovic
Sudeep Salgia
Qing Zhao
45
1
0
20 Feb 2024
Variational Gaussian Processes For Linear Inverse Problems
Thibault Randrianarisoa
Botond Szabó
43
3
0
01 Nov 2023
Pointwise uncertainty quantification for sparse variational Gaussian process regression with a Brownian motion prior
Luke Travis
Kolyan Ray
24
4
0
29 Sep 2023
Kernelized Reinforcement Learning with Order Optimal Regret Bounds
Sattar Vakili
Julia Olkhovskaya
23
9
0
13 Jun 2023
Sample Complexity of Kernel-Based Q-Learning
Sing-Yuan Yeh
Fu-Chieh Chang
Chang-Wei Yueh
Pei-Yuan Wu
A. Bernacchia
Sattar Vakili
OffRL
27
4
0
01 Feb 2023
Delayed Feedback in Kernel Bandits
Sattar Vakili
Danyal Ahmed
A. Bernacchia
Ciara Pike-Burke
11
6
0
01 Feb 2023
Uncertainty quantification for sparse spectral variational approximations in Gaussian process regression
D. Nieman
Botond Szabó
Harry Van Zanten
31
5
0
21 Dec 2022
On Kernelized Multi-Armed Bandits with Constraints
Xingyu Zhou
Bo Ji
19
29
0
29 Mar 2022
Gaussian Process Bandit Optimization with Few Batches
Zihan Li
Jonathan Scarlett
GP
131
47
0
15 Oct 2021
Contraction rates for sparse variational approximations in Gaussian process regression
D. Nieman
Botond Szabó
Harry Van Zanten
52
17
0
22 Sep 2021
Connections and Equivalences between the Nyström Method and Sparse Variational Gaussian Processes
Veit Wild
Motonobu Kanagawa
Dino Sejdinovic
38
16
0
02 Jun 2021
Regret Bounds for Noise-Free Kernel-Based Bandits
Sattar Vakili
36
3
0
12 Feb 2020
1