Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2202.03926
Cited By
Distribution Regression with Sliced Wasserstein Kernels
8 February 2022
Dimitri Meunier
Massimiliano Pontil
C. Ciliberto
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Distribution Regression with Sliced Wasserstein Kernels"
25 / 25 papers shown
Title
Improved learning theory for kernel distribution regression with two-stage sampling
François Bachoc
Louis Bethune
Alberto González Sanz
Jean-Michel Loubes
126
2
0
28 Jan 2025
Robust Kernel-based Distribution Regression
Zhan Yu
D. Ho
Ding-Xuan Zhou
OOD
63
11
0
21 Apr 2021
Stochastic Gradient Descent Meets Distribution Regression
Nicole Mücke
55
5
0
24 Oct 2020
The Advantage of Conditional Meta-Learning for Biased Regularization and Fine-Tuning
Giulia Denevi
Massimiliano Pontil
C. Ciliberto
86
41
0
25 Aug 2020
Linear Optimal Transport Embedding: Provable Wasserstein classification for certain rigid transformations and perturbations
Caroline Moosmüller
A. Cloninger
OT
119
44
0
20 Aug 2020
Kernel methods through the roof: handling billions of points efficiently
Giacomo Meanti
Luigi Carratino
Lorenzo Rosasco
Alessandro Rudi
68
116
0
18 Jun 2020
Statistical and Topological Properties of Sliced Probability Divergences
Kimia Nadjahi
Alain Durmus
Lénaïc Chizat
Soheil Kolouri
Shahin Shahrampour
Umut Simsekli
41
86
0
12 Mar 2020
Quantitative stability of optimal transport maps and linearization of the 2-Wasserstein space
Q. Mérigot
Alex Delalande
Frédéric Chazal
OT
39
44
0
14 Oct 2019
Asymptotic Guarantees for Learning Generative Models with the Sliced-Wasserstein Distance
Kimia Nadjahi
Alain Durmus
Umut Simsekli
Roland Badeau
MedIm
56
63
0
11 Jun 2019
Max-Sliced Wasserstein Distance and its use for GANs
Ishani Deshpande
Yuan-Ting Hu
Ruoyu Sun
A. Pyrros
Nasir Siddiqui
Oluwasanmi Koyejo
Zhizhen Zhao
David A. Forsyth
Alex Schwing
GAN
40
201
0
11 Apr 2019
Sliced Wasserstein Discrepancy for Unsupervised Domain Adaptation
Chen-Yu Lee
Tanmay Batra
M. H. Baig
Daniel Ulbricht
127
541
0
10 Mar 2019
Generalized Sliced Wasserstein Distances
Soheil Kolouri
Kimia Nadjahi
Umut Simsekli
Roland Badeau
Gustavo K. Rohde
50
300
0
01 Feb 2019
Distribution regression model with a Reproducing Kernel Hilbert Space approach
T. T. T. Bui
Jean-Michel Loubes
Risser
Balaresque
46
11
0
27 Jun 2018
Generative Modeling using the Sliced Wasserstein Distance
Ishani Deshpande
Ziyu Zhang
Alex Schwing
GAN
55
226
0
29 Mar 2018
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
280
8,878
0
25 Aug 2017
Sliced Wasserstein Kernel for Persistence Diagrams
Mathieu Carrière
Marco Cuturi
S. Oudot
56
237
0
11 Jun 2017
A Gaussian Process Regression Model for Distribution Inputs
François Bachoc
Fabrice Gamboa
Jean-Michel Loubes
N. Venet
74
52
0
31 Jan 2017
Distributed learning with regularized least squares
Shaobo Lin
Xin Guo
Ding-Xuan Zhou
149
191
0
11 Aug 2016
Uncertain programming model for multi-item solid transportation problem
Hasan Dalman
104
64
0
31 May 2016
Sliced Wasserstein Kernels for Probability Distributions
Soheil Kolouri
Yang Zou
Gustavo K. Rohde
39
161
0
10 Nov 2015
Learning Theory for Distribution Regression
Z. Szabó
Bharath K. Sriperumbudur
Barnabás Póczós
Arthur Gretton
OOD
58
138
0
08 Nov 2014
Geodesic Exponential Kernels: When Curvature and Linearity Conflict
Aasa Feragen
F. Lauze
Søren Hauberg
BDL
43
144
0
02 Nov 2014
Fast Distribution To Real Regression
Junier B. Oliva
Willie Neiswanger
Barnabás Póczós
J. Schneider
Eric Xing
63
45
0
10 Nov 2013
Distribution-Free Distribution Regression
Barnabás Póczós
Alessandro Rinaldo
Aarti Singh
Larry A. Wasserman
85
99
0
01 Feb 2013
Multiclass Learning with Simplex Coding
Youssef Mroueh
T. Poggio
Lorenzo Rosasco
Jean-Jacques E. Slotine
81
52
0
06 Sep 2012
1