ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.03926
  4. Cited By
Distribution Regression with Sliced Wasserstein Kernels

Distribution Regression with Sliced Wasserstein Kernels

8 February 2022
Dimitri Meunier
Massimiliano Pontil
C. Ciliberto
    OOD
ArXivPDFHTML

Papers citing "Distribution Regression with Sliced Wasserstein Kernels"

25 / 25 papers shown
Title
Improved learning theory for kernel distribution regression with two-stage sampling
Improved learning theory for kernel distribution regression with two-stage sampling
François Bachoc
Louis Bethune
Alberto González Sanz
Jean-Michel Loubes
126
2
0
28 Jan 2025
Robust Kernel-based Distribution Regression
Robust Kernel-based Distribution Regression
Zhan Yu
D. Ho
Ding-Xuan Zhou
OOD
63
11
0
21 Apr 2021
Stochastic Gradient Descent Meets Distribution Regression
Stochastic Gradient Descent Meets Distribution Regression
Nicole Mücke
55
5
0
24 Oct 2020
The Advantage of Conditional Meta-Learning for Biased Regularization and
  Fine-Tuning
The Advantage of Conditional Meta-Learning for Biased Regularization and Fine-Tuning
Giulia Denevi
Massimiliano Pontil
C. Ciliberto
86
41
0
25 Aug 2020
Linear Optimal Transport Embedding: Provable Wasserstein classification
  for certain rigid transformations and perturbations
Linear Optimal Transport Embedding: Provable Wasserstein classification for certain rigid transformations and perturbations
Caroline Moosmüller
A. Cloninger
OT
119
44
0
20 Aug 2020
Kernel methods through the roof: handling billions of points efficiently
Kernel methods through the roof: handling billions of points efficiently
Giacomo Meanti
Luigi Carratino
Lorenzo Rosasco
Alessandro Rudi
68
116
0
18 Jun 2020
Statistical and Topological Properties of Sliced Probability Divergences
Statistical and Topological Properties of Sliced Probability Divergences
Kimia Nadjahi
Alain Durmus
Lénaïc Chizat
Soheil Kolouri
Shahin Shahrampour
Umut Simsekli
41
86
0
12 Mar 2020
Quantitative stability of optimal transport maps and linearization of
  the 2-Wasserstein space
Quantitative stability of optimal transport maps and linearization of the 2-Wasserstein space
Q. Mérigot
Alex Delalande
Frédéric Chazal
OT
39
44
0
14 Oct 2019
Asymptotic Guarantees for Learning Generative Models with the
  Sliced-Wasserstein Distance
Asymptotic Guarantees for Learning Generative Models with the Sliced-Wasserstein Distance
Kimia Nadjahi
Alain Durmus
Umut Simsekli
Roland Badeau
MedIm
56
63
0
11 Jun 2019
Max-Sliced Wasserstein Distance and its use for GANs
Max-Sliced Wasserstein Distance and its use for GANs
Ishani Deshpande
Yuan-Ting Hu
Ruoyu Sun
A. Pyrros
Nasir Siddiqui
Oluwasanmi Koyejo
Zhizhen Zhao
David A. Forsyth
Alex Schwing
GAN
40
201
0
11 Apr 2019
Sliced Wasserstein Discrepancy for Unsupervised Domain Adaptation
Sliced Wasserstein Discrepancy for Unsupervised Domain Adaptation
Chen-Yu Lee
Tanmay Batra
M. H. Baig
Daniel Ulbricht
127
541
0
10 Mar 2019
Generalized Sliced Wasserstein Distances
Generalized Sliced Wasserstein Distances
Soheil Kolouri
Kimia Nadjahi
Umut Simsekli
Roland Badeau
Gustavo K. Rohde
50
300
0
01 Feb 2019
Distribution regression model with a Reproducing Kernel Hilbert Space
  approach
Distribution regression model with a Reproducing Kernel Hilbert Space approach
T. T. T. Bui
Jean-Michel Loubes
Risser
Balaresque
46
11
0
27 Jun 2018
Generative Modeling using the Sliced Wasserstein Distance
Generative Modeling using the Sliced Wasserstein Distance
Ishani Deshpande
Ziyu Zhang
Alex Schwing
GAN
55
226
0
29 Mar 2018
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning
  Algorithms
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
280
8,878
0
25 Aug 2017
Sliced Wasserstein Kernel for Persistence Diagrams
Sliced Wasserstein Kernel for Persistence Diagrams
Mathieu Carrière
Marco Cuturi
S. Oudot
56
237
0
11 Jun 2017
A Gaussian Process Regression Model for Distribution Inputs
A Gaussian Process Regression Model for Distribution Inputs
François Bachoc
Fabrice Gamboa
Jean-Michel Loubes
N. Venet
74
52
0
31 Jan 2017
Distributed learning with regularized least squares
Distributed learning with regularized least squares
Shaobo Lin
Xin Guo
Ding-Xuan Zhou
149
191
0
11 Aug 2016
Uncertain programming model for multi-item solid transportation problem
Uncertain programming model for multi-item solid transportation problem
Hasan Dalman
104
64
0
31 May 2016
Sliced Wasserstein Kernels for Probability Distributions
Sliced Wasserstein Kernels for Probability Distributions
Soheil Kolouri
Yang Zou
Gustavo K. Rohde
39
161
0
10 Nov 2015
Learning Theory for Distribution Regression
Learning Theory for Distribution Regression
Z. Szabó
Bharath K. Sriperumbudur
Barnabás Póczós
Arthur Gretton
OOD
58
138
0
08 Nov 2014
Geodesic Exponential Kernels: When Curvature and Linearity Conflict
Geodesic Exponential Kernels: When Curvature and Linearity Conflict
Aasa Feragen
F. Lauze
Søren Hauberg
BDL
43
144
0
02 Nov 2014
Fast Distribution To Real Regression
Fast Distribution To Real Regression
Junier B. Oliva
Willie Neiswanger
Barnabás Póczós
J. Schneider
Eric Xing
63
45
0
10 Nov 2013
Distribution-Free Distribution Regression
Distribution-Free Distribution Regression
Barnabás Póczós
Alessandro Rinaldo
Aarti Singh
Larry A. Wasserman
85
99
0
01 Feb 2013
Multiclass Learning with Simplex Coding
Multiclass Learning with Simplex Coding
Youssef Mroueh
T. Poggio
Lorenzo Rosasco
Jean-Jacques E. Slotine
81
52
0
06 Sep 2012
1