ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.03898
  4. Cited By
Verification-Aided Deep Ensemble Selection

Verification-Aided Deep Ensemble Selection

8 February 2022
Guy Amir
Tom Zelazny
Guy Katz
Michael Schapira
    AAML
ArXivPDFHTML

Papers citing "Verification-Aided Deep Ensemble Selection"

22 / 72 papers shown
Title
An approach to reachability analysis for feed-forward ReLU neural
  networks
An approach to reachability analysis for feed-forward ReLU neural networks
A. Lomuscio
Lalit Maganti
63
359
0
22 Jun 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
307
12,069
0
19 Jun 2017
Analyzing the Robustness of Nearest Neighbors to Adversarial Examples
Analyzing the Robustness of Nearest Neighbors to Adversarial Examples
Yizhen Wang
S. Jha
Kamalika Chaudhuri
AAML
181
155
0
13 Jun 2017
Ensemble Adversarial Training: Attacks and Defenses
Ensemble Adversarial Training: Attacks and Defenses
Florian Tramèr
Alexey Kurakin
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick McDaniel
AAML
177
2,725
0
19 May 2017
Formal Verification of Piece-Wise Linear Feed-Forward Neural Networks
Formal Verification of Piece-Wise Linear Feed-Forward Neural Networks
Rüdiger Ehlers
102
626
0
03 May 2017
Parseval Networks: Improving Robustness to Adversarial Examples
Parseval Networks: Improving Robustness to Adversarial Examples
Moustapha Cissé
Piotr Bojanowski
Edouard Grave
Yann N. Dauphin
Nicolas Usunier
AAML
138
807
0
28 Apr 2017
Adversarial Attacks on Neural Network Policies
Adversarial Attacks on Neural Network Policies
Sandy Huang
Nicolas Papernot
Ian Goodfellow
Yan Duan
Pieter Abbeel
MLAU
AAML
91
837
0
08 Feb 2017
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
318
1,868
0
03 Feb 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
831
5,821
0
05 Dec 2016
Safety Verification of Deep Neural Networks
Safety Verification of Deep Neural Networks
Xiaowei Huang
Marta Kwiatkowska
Sen Wang
Min Wu
AAML
219
943
0
21 Oct 2016
Adversarial examples in the physical world
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
540
5,897
0
08 Jul 2016
Stochastic Multiple Choice Learning for Training Diverse Deep Ensembles
Stochastic Multiple Choice Learning for Training Diverse Deep Ensembles
Stefan Lee
Senthil Purushwalkam
Michael Cogswell
Viresh Ranjan
David J. Crandall
Dhruv Batra
BDL
UQCV
OOD
66
178
0
24 Jun 2016
End to End Learning for Self-Driving Cars
End to End Learning for Self-Driving Cars
Mariusz Bojarski
D. Testa
Daniel Dworakowski
Bernhard Firner
B. Flepp
...
Urs Muller
Jiakai Zhang
Xin Zhang
Jake Zhao
Karol Zieba
SSL
100
4,170
0
25 Apr 2016
Practical Black-Box Attacks against Machine Learning
Practical Black-Box Attacks against Machine Learning
Nicolas Papernot
Patrick McDaniel
Ian Goodfellow
S. Jha
Z. Berkay Celik
A. Swami
MLAU
AAML
75
3,677
0
08 Feb 2016
The Limitations of Deep Learning in Adversarial Settings
The Limitations of Deep Learning in Adversarial Settings
Nicolas Papernot
Patrick McDaniel
S. Jha
Matt Fredrikson
Z. Berkay Celik
A. Swami
AAML
105
3,962
0
24 Nov 2015
Why M Heads are Better than One: Training a Diverse Ensemble of Deep
  Networks
Why M Heads are Better than One: Training a Diverse Ensemble of Deep Networks
Stefan Lee
Senthil Purushwalkam
Michael Cogswell
David J. Crandall
Dhruv Batra
FedML
UQCV
108
316
0
19 Nov 2015
DeepFool: a simple and accurate method to fool deep neural networks
DeepFool: a simple and accurate method to fool deep neural networks
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
P. Frossard
AAML
151
4,897
0
14 Nov 2015
Domain-Adversarial Training of Neural Networks
Domain-Adversarial Training of Neural Networks
Yaroslav Ganin
E. Ustinova
Hana Ajakan
Pascal Germain
Hugo Larochelle
François Laviolette
M. Marchand
Victor Lempitsky
GAN
OOD
375
9,497
0
28 May 2015
Explaining and Harnessing Adversarial Examples
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
277
19,066
0
20 Dec 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
1.6K
100,386
0
04 Sep 2014
Intriguing properties of neural networks
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
270
14,918
1
21 Dec 2013
Natural Language Processing (almost) from Scratch
Natural Language Processing (almost) from Scratch
R. Collobert
Jason Weston
Léon Bottou
Michael Karlen
Koray Kavukcuoglu
Pavel P. Kuksa
186
7,726
0
02 Mar 2011
Previous
12