ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.03770
  4. Cited By
Impact of Parameter Sparsity on Stochastic Gradient MCMC Methods for
  Bayesian Deep Learning

Impact of Parameter Sparsity on Stochastic Gradient MCMC Methods for Bayesian Deep Learning

8 February 2022
Meet P. Vadera
Adam D. Cobb
Brian Jalaian
Benjamin M. Marlin
    BDL
ArXivPDFHTML

Papers citing "Impact of Parameter Sparsity on Stochastic Gradient MCMC Methods for Bayesian Deep Learning"

1 / 1 papers shown
Title
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,145
0
06 Jun 2015
1