Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2202.03599
Cited By
Penalizing Gradient Norm for Efficiently Improving Generalization in Deep Learning
8 February 2022
Yang Zhao
Hao Zhang
Xiuyuan Hu
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Penalizing Gradient Norm for Efficiently Improving Generalization in Deep Learning"
33 / 83 papers shown
Title
Gotta match ém all: Solution diversification in graph matching matched filters
Zhirui Li
Ben Johnson
D. Sussman
Carey E. Priebe
V. Lyzinski
27
0
0
25 Aug 2023
Bias-Aware Minimisation: Understanding and Mitigating Estimator Bias in Private SGD
Moritz Knolle
R. Dorfman
Alexander Ziller
Daniel Rueckert
Georgios Kaissis
20
2
0
23 Aug 2023
DFedADMM: Dual Constraints Controlled Model Inconsistency for Decentralized Federated Learning
Qinglun Li
Li Shen
Guang-Ming Li
Quanjun Yin
Dacheng Tao
FedML
31
7
0
16 Aug 2023
G-Mix: A Generalized Mixup Learning Framework Towards Flat Minima
Xingyu Li
Bo Tang
AAML
17
0
0
07 Aug 2023
Flatness-Aware Minimization for Domain Generalization
Xingxuan Zhang
Renzhe Xu
Han Yu
Yancheng Dong
Pengfei Tian
Peng Cu
32
20
0
20 Jul 2023
Why Does Little Robustness Help? Understanding and Improving Adversarial Transferability from Surrogate Training
Yechao Zhang
Shengshan Hu
Leo Yu Zhang
Junyu Shi
Minghui Li
Xiaogeng Liu
Wei Wan
Hai Jin
AAML
22
21
0
15 Jul 2023
Systematic Investigation of Sparse Perturbed Sharpness-Aware Minimization Optimizer
Peng Mi
Li Shen
Tianhe Ren
Yiyi Zhou
Tianshuo Xu
Xiaoshuai Sun
Tongliang Liu
Rongrong Ji
Dacheng Tao
AAML
37
2
0
30 Jun 2023
The Inductive Bias of Flatness Regularization for Deep Matrix Factorization
Khashayar Gatmiry
Zhiyuan Li
Ching-Yao Chuang
Sashank J. Reddi
Tengyu Ma
Stefanie Jegelka
ODL
25
11
0
22 Jun 2023
The Split Matters: Flat Minima Methods for Improving the Performance of GNNs
N. Lell
A. Scherp
43
1
0
15 Jun 2023
Differentially Private Sharpness-Aware Training
Jinseong Park
Hoki Kim
Yujin Choi
Jaewook Lee
27
8
0
09 Jun 2023
Boosting Adversarial Transferability by Achieving Flat Local Maxima
Zhijin Ge
Hongying Liu
Xiaosen Wang
Fanhua Shang
Yuanyuan Liu
AAML
14
40
0
08 Jun 2023
Towards More Suitable Personalization in Federated Learning via Decentralized Partial Model Training
Yi Shi
Yingqi Liu
Yan Sun
Zihao Lin
Li Shen
Xueqian Wang
Dacheng Tao
FedML
45
10
0
24 May 2023
Dynamic Regularized Sharpness Aware Minimization in Federated Learning: Approaching Global Consistency and Smooth Landscape
Yan Sun
Li Shen
Shi-Yong Chen
Liang Ding
Dacheng Tao
FedML
34
33
0
19 May 2023
Flatness-Aware Prompt Selection Improves Accuracy and Sample Efficiency
Lingfeng Shen
Weiting Tan
Boyuan Zheng
Daniel Khashabi
VLM
39
6
0
18 May 2023
Towards the Flatter Landscape and Better Generalization in Federated Learning under Client-level Differential Privacy
Yi Shi
Kang Wei
Li Shen
Yingqi Liu
Xueqian Wang
Bo Yuan
Dacheng Tao
FedML
38
2
0
01 May 2023
An Adaptive Policy to Employ Sharpness-Aware Minimization
Weisen Jiang
Hansi Yang
Yu Zhang
James T. Kwok
AAML
83
31
0
28 Apr 2023
Per-Example Gradient Regularization Improves Learning Signals from Noisy Data
Xuran Meng
Yuan Cao
Difan Zou
25
5
0
31 Mar 2023
Robust Generalization against Photon-Limited Corruptions via Worst-Case Sharpness Minimization
Zhuo Huang
Miaoxi Zhu
Xiaobo Xia
Li Shen
Jun Yu
Chen Gong
Bo Han
Bo Du
Tongliang Liu
35
33
0
23 Mar 2023
Make Landscape Flatter in Differentially Private Federated Learning
Yi Shi
Yingqi Liu
Kang Wei
Li Shen
Xueqian Wang
Dacheng Tao
FedML
25
54
0
20 Mar 2023
Gradient Norm Aware Minimization Seeks First-Order Flatness and Improves Generalization
Xingxuan Zhang
Renzhe Xu
Han Yu
Hao Zou
Peng Cui
16
39
0
03 Mar 2023
FedSpeed: Larger Local Interval, Less Communication Round, and Higher Generalization Accuracy
Yan Sun
Li Shen
Tiansheng Huang
Liang Ding
Dacheng Tao
FedML
36
51
0
21 Feb 2023
Improving Differentiable Architecture Search via Self-Distillation
Xunyu Zhu
Jian Li
Yong Liu
Weiping Wang
24
7
0
11 Feb 2023
Improving the Model Consistency of Decentralized Federated Learning
Yi Shi
Li Shen
Kang Wei
Yan Sun
Bo Yuan
Xueqian Wang
Dacheng Tao
FedML
36
51
0
08 Feb 2023
Improving Multi-task Learning via Seeking Task-based Flat Regions
Hoang Phan
Lam C. Tran
Ngoc N. Tran
Nhat Ho
Dinh Q. Phung
Trung Le
27
11
0
24 Nov 2022
Efficient Generalization Improvement Guided by Random Weight Perturbation
Tao Li
Wei Yan
Zehao Lei
Yingwen Wu
Kun Fang
Ming Yang
X. Huang
AAML
40
6
0
21 Nov 2022
How Does Sharpness-Aware Minimization Minimize Sharpness?
Kaiyue Wen
Tengyu Ma
Zhiyuan Li
AAML
23
47
0
10 Nov 2022
Make Sharpness-Aware Minimization Stronger: A Sparsified Perturbation Approach
Peng Mi
Li Shen
Tianhe Ren
Yiyi Zhou
Xiaoshuai Sun
Rongrong Ji
Dacheng Tao
AAML
29
69
0
11 Oct 2022
Understanding Gradient Regularization in Deep Learning: Efficient Finite-Difference Computation and Implicit Bias
Ryo Karakida
Tomoumi Takase
Tomohiro Hayase
Kazuki Osawa
15
14
0
06 Oct 2022
On the Interpretability of Regularisation for Neural Networks Through Model Gradient Similarity
Vincent Szolnoky
Viktor Andersson
Balázs Kulcsár
Rebecka Jörnsten
42
5
0
25 May 2022
Randomized Sharpness-Aware Training for Boosting Computational Efficiency in Deep Learning
Yang Zhao
Hao Zhang
Xiuyuan Hu
18
9
0
18 Mar 2022
Estimating the Generalization in Deep Neural Networks via Sparsity
Yang Zhao
Hao Zhang
45
2
0
02 Apr 2021
On the Overlooked Pitfalls of Weight Decay and How to Mitigate Them: A Gradient-Norm Perspective
Zeke Xie
Zhiqiang Xu
Jingzhao Zhang
Issei Sato
Masashi Sugiyama
19
22
0
23 Nov 2020
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
308
2,890
0
15 Sep 2016
Previous
1
2