ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.03036
  4. Cited By
Structure-Aware Transformer for Graph Representation Learning

Structure-Aware Transformer for Graph Representation Learning

7 February 2022
Dexiong Chen
Leslie O’Bray
Karsten M. Borgwardt
ArXivPDFHTML

Papers citing "Structure-Aware Transformer for Graph Representation Learning"

31 / 31 papers shown
Title
Open the Eyes of MPNN: Vision Enhances MPNN in Link Prediction
Open the Eyes of MPNN: Vision Enhances MPNN in Link Prediction
Yanbin Wei
Xuehao Wang
Zhan Zhuang
Yang Chen
Shuhao Chen
Yulong Zhang
Yu-Jie Zhang
James T. Kwok
31
0
0
13 May 2025
SA-GAT-SR: Self-Adaptable Graph Attention Networks with Symbolic Regression for high-fidelity material property prediction
SA-GAT-SR: Self-Adaptable Graph Attention Networks with Symbolic Regression for high-fidelity material property prediction
Liu Junchi
Tang Ying
Tretiak Sergei
Duan Wenhui
Zhou Liujiang
38
0
0
01 May 2025
Learning Laplacian Positional Encodings for Heterophilous Graphs
Learning Laplacian Positional Encodings for Heterophilous Graphs
Michael Ito
Jiong Zhu
Dexiong Chen
Danai Koutra
Jenna Wiens
133
1
0
29 Apr 2025
Graph Fourier Transformer with Structure-Frequency Information
Graph Fourier Transformer with Structure-Frequency Information
Yonghui Zhai
Yang Zhang
Minghao Shang
Lihua Pang
Yaxin Ren
38
0
0
28 Apr 2025
Graph Perceiver IO: A General Architecture for Graph Structured Data
Graph Perceiver IO: A General Architecture for Graph Structured Data
Seyun Bae
Hoyoon Byun
Changdae Oh
Yoon-Sik Cho
Kyungwoo Song
GNN
98
2
0
24 Feb 2025
A Survey of Graph Transformers: Architectures, Theories and Applications
A Survey of Graph Transformers: Architectures, Theories and Applications
Chaohao Yuan
Kangfei Zhao
Ercan Engin Kuruoglu
Liang Wang
Tingyang Xu
Wenbing Huang
Deli Zhao
Hong Cheng
Yu Rong
57
4
0
23 Feb 2025
Semi-supervised Anomaly Detection with Extremely Limited Labels in Dynamic Graphs
Semi-supervised Anomaly Detection with Extremely Limited Labels in Dynamic Graphs
Jiazhen Chen
Sichao Fu
Zheng Ma
M. Feng
T. Wirjanto
Qinmu Peng
43
0
0
25 Jan 2025
Towards Graph Foundation Models: A Study on the Generalization of Positional and Structural Encodings
Towards Graph Foundation Models: A Study on the Generalization of Positional and Structural Encodings
Billy Joe Franks
Moshe Eliasof
Semih Cantürk
Guy Wolf
Carola-Bibiane Schönlieb
Sophie Fellenz
Marius Kloft
AI4CE
86
0
0
10 Dec 2024
GrokFormer: Graph Fourier Kolmogorov-Arnold Transformers
GrokFormer: Graph Fourier Kolmogorov-Arnold Transformers
Guoguo Ai
Guansong Pang
Hezhe Qiao
Yuan Gao
Hui Yan
67
0
0
26 Nov 2024
A Benchmark on Directed Graph Representation Learning in Hardware
  Designs
A Benchmark on Directed Graph Representation Learning in Hardware Designs
Haoyu Wang
Yinan Huang
Nan Wu
Pan Li
OOD
48
1
0
09 Oct 2024
Sharing Key Semantics in Transformer Makes Efficient Image Restoration
Sharing Key Semantics in Transformer Makes Efficient Image Restoration
Bin Ren
Yawei Li
Jingyun Liang
Rakesh Ranjan
Mengyuan Liu
Rita Cucchiara
Luc Van Gool
Ming-Hsuan Yang
N. Sebe
45
5
0
30 May 2024
Topology-Informed Graph Transformer
Topology-Informed Graph Transformer
Yuncheol Choi
Sun Woo Park
Minho Lee
Youngho Woo
36
3
0
03 Feb 2024
Adaptive Message Passing: A General Framework to Mitigate Oversmoothing, Oversquashing, and Underreaching
Adaptive Message Passing: A General Framework to Mitigate Oversmoothing, Oversquashing, and Underreaching
Federico Errica
Henrik Christiansen
Viktor Zaverkin
Takashi Maruyama
Mathias Niepert
Francesco Alesiani
54
7
0
27 Dec 2023
In-Context Learning for Few-Shot Molecular Property Prediction
In-Context Learning for Few-Shot Molecular Property Prediction
Christopher Fifty
J. Leskovec
Sebastian Thrun
36
5
0
13 Oct 2023
Graph Inductive Biases in Transformers without Message Passing
Graph Inductive Biases in Transformers without Message Passing
Liheng Ma
Chen Lin
Derek Lim
Adriana Romero Soriano
P. Dokania
Mark J. Coates
Philip H. S. Torr
Ser-Nam Lim
AI4CE
31
85
0
27 May 2023
On Structural Expressive Power of Graph Transformers
On Structural Expressive Power of Graph Transformers
Wenhao Zhu
Tianyu Wen
Guojie Song
Liangji Wang
Bo Zheng
27
15
0
23 May 2023
AGFormer: Efficient Graph Representation with Anchor-Graph Transformer
AGFormer: Efficient Graph Representation with Anchor-Graph Transformer
Bo Jiang
Fei Xu
Ziyan Zhang
Jin Tang
Feiping Nie
36
4
0
12 May 2023
A Comprehensive Survey on Deep Graph Representation Learning
A Comprehensive Survey on Deep Graph Representation Learning
Wei Ju
Zheng Fang
Yiyang Gu
Zequn Liu
Qingqing Long
...
Jingyang Yuan
Yusheng Zhao
Yifan Wang
Xiao Luo
Ming Zhang
GNN
AI4TS
54
141
0
11 Apr 2023
Can We Scale Transformers to Predict Parameters of Diverse ImageNet
  Models?
Can We Scale Transformers to Predict Parameters of Diverse ImageNet Models?
Boris Knyazev
Doha Hwang
Simon Lacoste-Julien
AI4CE
31
17
0
07 Mar 2023
Diffusing Graph Attention
Diffusing Graph Attention
Daniel Glickman
Eran Yahav
GNN
47
3
0
01 Mar 2023
Single-Cell Multimodal Prediction via Transformers
Single-Cell Multimodal Prediction via Transformers
Wenzhuo Tang
Haifang Wen
Renming Liu
Jiayuan Ding
Wei Jin
Yuying Xie
Hui Liu
Jiliang Tang
AI4CE
24
11
0
01 Mar 2023
Single Cells Are Spatial Tokens: Transformers for Spatial Transcriptomic
  Data Imputation
Single Cells Are Spatial Tokens: Transformers for Spatial Transcriptomic Data Imputation
Haifang Wen
Wenzhuo Tang
Wei Jin
Jiayuan Ding
Renming Liu
Xinnan Dai
Feng Shi
Lulu Shang
Jiliang Tang
Yuying Xie
29
8
0
06 Feb 2023
Transformers Meet Directed Graphs
Transformers Meet Directed Graphs
Simon Geisler
Yujia Li
D. Mankowitz
A. Cemgil
Stephan Günnemann
Cosmin Paduraru
27
35
0
31 Jan 2023
On the Connection Between MPNN and Graph Transformer
On the Connection Between MPNN and Graph Transformer
Chen Cai
Truong Son-Hy
Rose Yu
Yusu Wang
39
51
0
27 Jan 2023
A Generalization of ViT/MLP-Mixer to Graphs
A Generalization of ViT/MLP-Mixer to Graphs
Xiaoxin He
Bryan Hooi
T. Laurent
Adam Perold
Yann LeCun
Xavier Bresson
47
88
0
27 Dec 2022
Adaptive Multi-Neighborhood Attention based Transformer for Graph
  Representation Learning
Adaptive Multi-Neighborhood Attention based Transformer for Graph Representation Learning
Gaichao Li
Jinsong Chen
Kun He
24
3
0
15 Nov 2022
Maximum Common Subgraph Guided Graph Retrieval: Late and Early
  Interaction Networks
Maximum Common Subgraph Guided Graph Retrieval: Late and Early Interaction Networks
Indradyumna Roy
Soumen Chakrabarti
A. De
GNN
30
4
0
20 Oct 2022
Does GNN Pretraining Help Molecular Representation?
Does GNN Pretraining Help Molecular Representation?
Ruoxi Sun
Hanjun Dai
Adams Wei Yu
SSL
AI4CE
GNN
6
70
0
13 Jul 2022
Recipe for a General, Powerful, Scalable Graph Transformer
Recipe for a General, Powerful, Scalable Graph Transformer
Ladislav Rampášek
Mikhail Galkin
Vijay Prakash Dwivedi
A. Luu
Guy Wolf
Dominique Beaini
57
515
0
25 May 2022
Graph Neural Networks with Learnable Structural and Positional
  Representations
Graph Neural Networks with Learnable Structural and Positional Representations
Vijay Prakash Dwivedi
A. Luu
T. Laurent
Yoshua Bengio
Xavier Bresson
GNN
197
309
0
15 Oct 2021
Benchmarking Graph Neural Networks
Benchmarking Graph Neural Networks
Vijay Prakash Dwivedi
Chaitanya K. Joshi
Anh Tuan Luu
T. Laurent
Yoshua Bengio
Xavier Bresson
189
916
0
02 Mar 2020
1